Abstract.

We target time-dependent partial differential equations (PDEs) with heterogeneous coefficients in space and time. To tackle these problems, we construct reduced basis/multiscale ansatz functions defined in space that can be combined with time stepping schemes within model order reduction or multiscale methods. To that end, we propose to perform several simulations of the PDE for a few time steps in parallel starting at different, randomly drawn start points, prescribing random initial conditions; applying a singular value decomposition to a subset of the so obtained snapshots yields the reduced basis/multiscale ansatz functions. This facilitates constructing the reduced basis/multiscale ansatz functions in an embarrassingly parallel manner. In detail, we suggest using a data-dependent probability distribution based on the data functions of the PDE to select the start points. Each local in time simulation of the PDE with random initial conditions approximates a local approximation space in one time point that is optimal in the sense of Kolmogorov. The derivation of these optimal local approximation spaces which are spanned by the left singular vectors of a compact transfer operator that maps arbitrary initial conditions to the solution of the PDE in a later point of time is one other main contribution of this paper. By solving the PDE locally in time with random initial conditions, we construct local ansatz spaces in time that converge provably at a quasi-optimal rate and allow for local error control. Numerical experiments demonstrate that the proposed method can outperform existing methods like the proper orthogonal decomposition even in a sequential setting and is well capable of approximating advection-dominated problems.

Keywords

  1. multiscale methods
  2. model order reduction
  3. randomized numerical linear algebra
  4. Kolmogorov n-width

MSC codes

  1. 65C20
  2. 65M12
  3. 65M15
  4. 65M55
  5. 65M60
  6. 65M75

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

The authors thank Dr. Alexander Heinlein for providing us with the data file of the permeability field \(\kappa_0\) used in Example 4. Moreover, we thank Dr. Christian Himpe for discussions regarding system and control theory.

Supplementary Materials

PLEASE NOTE: These supplementary files have not been peer-reviewed.

Index of Supplementary Materials

Title of paper: Randomized Quasi-Optimal Local Approximation Spaces in Time
Authors: Julia Schleuß, Kathrin Smetana, and Lukas ter Maat
File: supplement.pdf
Type: PDF
Contents: In section SM2 of the supplementary materials, we provide the data functions and parameters in order to fully reproduce the numerical results corresponding to Example 1 in the manuscript. Moreover, we state and briefly discuss the existing error bounds for squared norm and leverage score sampling in section SM1 and the available compactness results for generalized Sobolev spaces in section SM3.

References

1.
A. Alaoui and M. W. Mahoney, Fast randomized kernel ridge regression with statistical guarantees, Adv. Neural Inf. Process. Syst., 28 (2015).
2.
I. Babuška and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9 (2011), pp. 373–406.
3.
G. Berkooz, P. Holmes and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25 (1993), pp. 539–575.
4.
A. Bonito, A. Cohen, R. DeVore, G. Petrova and G. Welper, Diffusion coefficients estimation for elliptic partial differential equations, SIAM J. Math. Anal., 49 (2017), pp. 1570–1592.
5.
A. Buhr, L. Iapichino, M. Ohlberger, S. Rave, F. Schindler, and K. Smetana, Localized model reduction for parameterized problems, in Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms, P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Sileira, eds., Walter De Gruyter, Berlin, 2020, pp. 235–305.
6.
A. Buhr and K. Smetana, Randomized local model order reduction, SIAM J. Sci. Comput., 40 (2018), pp. A2120–A2151.
7.
Y. Chahlaoui and P. V. Dooren, Model reduction of time-varying systems, in Dimension Reduction of Large-Scale Systems, Springer, New York, 2005, pp. 131–148.
8.
K. Chen, Q. Li, J. Lu, and S. J. Wright, Randomized sampling for basis function construction in generalized finite element methods, Multiscale Model. Simul., 18 (2020), pp. 1153–1177.
9.
M. A. Christie and M. J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reserv. Eval. Eng., 4 (2001), pp. 308–317.
10.
E. T. Chung, Y. Efendiev, W. T. Leung, and S. Ye, Generalized multiscale finite element methods for space-time heterogeneous parabolic equations, Comput. Math. Appl., 76 (2018), pp. 419–437.
11.
P. R. Conrad, M. Girolami, S. Särkkä, A. Stuart, and K. Zygalakis, Statistical analysis of differential equations: Introducing probability measures on numerical solutions, Statist. Comput., 27 (2017), pp. 1065–1082.
12.
M. Dereziński and M. W. Mahoney, Determinantal point processes in randomized numerical linear algebra, Notices Amer. Math. Soc., 68 (2021), pp. 34–45.
13.
A. Deshpande and L. Rademacher, Efficient volume sampling for row/column subset selection, in Proceedings of the 51st Annual Symposium on Foundations of Computer Science, IEEE, 2010, pp. 329–338.
14.
A. Deshpande, L. Rademacher, S. Vempala and G. Wang, Matrix approximation and projective clustering via volume sampling, Theory Comput., 2 (2006), pp. 225–247.
15.
P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff, Fast approximation of matrix coherence and statistical leverage, J. Mach. Learn. Res., 13 (2012), pp. 3475–3506.
16.
P. Drineas and M. W. Mahoney, RandNLA: Randomized numerical linear algebra, Commun. ACM, 59 (2016), pp. 80–90.
17.
P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Relative-error CUR matrix decompositions, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 844–881.
18.
J. L. Eftang and A. T. Patera, Port reduction in parametrized component static condensation: Approximation and a posteriori error estimation, Internat. J. Numer. Methods Engrg., 96 (2013), pp. 269–302.
19.
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004.
20.
A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank approximations, J. ACM, 51 (2004), pp. 1025–1041.
21.
G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Stud. Math. Sci., 4th ed., Johns Hopkins University Press, Baltimore, MD, 2013.
22.
L. Grasedyck, I. Greff, and S. Sauter, The AL basis for the solution of elliptic problems in heterogeneous media, Multiscale Model. Simul., 10 (2012), pp. 245–258.
23.
N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288.
24.
D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, A static condensation reduced basis element method: Approximation and a posteriori error estimation, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 213–251.
25.
L. Iapichino, A. Quarteroni, and G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks, Comput. Methods Appl. Mech. Engrg., 221/222 (2012), pp. 63–82.
26.
A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse, Ann. of Math., 37 (1936), pp. 107–110.
27.
K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90 (2001), pp. 117–148.
28.
S. Lall and C. Beck, Error-bounds for balanced model-reduction of linear time-varying systems, IEEE Trans. Automat. Control, 48 (2003), pp. 946–956.
29.
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users Guide, SIAM, Philadelphia, 1998.
30.
J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661–668.
31.
P. Ljung, R. Maier, and A. Målqvist, A space-time multiscale method for parabolic problems, Multiscale Model. Simul., 20 (2022).
32.
C. Ma, R. Scheichl, and T. Dodwell, Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations, SIAM J. Numer. Anal., 60 (2022), pp. 244–273.
33.
Y. Maday and E. M. Rønquist, A reduced-basis element method, J. Sci. Comput., 17 (2002), pp. 447–459.
34.
M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 697–702.
35.
A. Målqvist and A. Persson, Multiscale techniques for parabolic equations, Numer. Math., 138 (2018), pp. 191–217.
36.
A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83 (2014), pp. 2583–2603.
37.
P.-G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decomposition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.
38.
B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17–32.
39.
H. Owhadi, Bayesian numerical homogenization, Multiscale Model. Simul., 13 (2015), pp. 812–828.
40.
H. Owhadi and L. Zhang, Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast, Multiscale Model. Simul., 9 (2011), pp. 1373–1398.
41.
H. Owhadi and L. Zhang, Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients, J. Comput. Phys., 347 (2017), pp. 99–128.
42.
H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 517–552.
43.
A. Pinkus, \(n\) -Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3) 7, Springer-Verlag, Berlin, 1985.
44.
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Texts Appl. Math. 13, Springer, New York, 2004.
45.
C. W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), pp. 997–1013.
46.
A. K. Saibaba, Randomized discrete empirical interpolation method for nonlinear model reduction, SIAM J. Sci. Comput., 42 (2020), pp. A1582–A1608.
47.
H. Sandberg and A. Rantzer, Balanced truncation of linear time-varying systems, IEEE Trans. Automat. Control, 49 (2004), pp. 217–229.
48.
J. Schleuß, Source Code to “Randomized Quasi-Optimal Local Approximation Spaces in Time,” 2022, https://doi.org/10.5281/zenodo.6287484.
49.
J. Schleuß and K. Smetana, Optimal local approximation spaces for parabolic problems, Multiscale Model. Simul., 20 (2022), pp. 551–582.
50.
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656 (2010), pp. 5–28.
51.
M. Schober, D. K. Duvenaud, and P. Hennig, Probabilistic ODE solvers with Runge-Kutta means, Adv. Neural Inf. Process. Syst., 27 (2014).
52.
M. Schober, S. Särkkä, and P. Hennig, A probabilistic model for the numerical solution of initial value problems, Statist. Comput., 29 (2019), pp. 99–122.
53.
C. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comp., 78 (2009), pp. 1293–1318.
54.
S. Shokoohi, L. M. Silverman, and P. M. Van Dooren, Linear time-variable systems: Balancing and model reduction, IEEE Trans. Automat. Control, 28 (1983), pp. 810–822.
55.
J. Simon, Compact sets in the space \(L^p(0,T;B)\) , Ann. Mat. Pura Appl., 146 (1987), pp. 65–96.
56.
L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quart. Appl. Math., 45 (1987), pp. 561–571.
57.
K. Smetana and A. T. Patera, Optimal local approximation spaces for component-based static condensation procedures, SIAM J. Sci. Comput., 38 (2016), pp. A3318–A3356.
58.
T. Taddei and A. T. Patera, A localization strategy for data assimilation; application to state estimation and parameter estimation, SIAM J. Sci. Comput., 40 (2018), pp. B611–B636.
59.
L. Ter Maat, Random Initial Conditions in Model Order Reduction, Bachelor‘s thesis, University of Twente, 2019.
60.
J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, On dynamic mode decomposition: Theory and applications, J. Comput. Dyn., 1 (2014), pp. 391–421.
61.
B. Unger and S. Gugercin, Kolmogorov \(n\) -widths for linear dynamical systems, Adv. Comput. Math., 45 (2019), pp. 2273–2286.
62.
E. I. Verriest and T. Kailath, On generalized balanced realizations, IEEE Trans. Automat. Control, 28 (1983), pp. 833–844.
63.
J. Wloka, Partielle Differentialgleichungen, B. G. Teubner, Stuttgart, 1982.
64.
D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci., 10 (2014).

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1066 - A1096
ISSN (online): 1095-7197

History

Submitted: 14 March 2022
Accepted: 23 November 2022
Published online: 15 May 2023

Keywords

  1. multiscale methods
  2. model order reduction
  3. randomized numerical linear algebra
  4. Kolmogorov n-width

MSC codes

  1. 65C20
  2. 65M12
  3. 65M15
  4. 65M55
  5. 65M60
  6. 65M75

Authors

Affiliations

Julia Schleuß Contact the author
Faculty of Mathematics and Computer Science, University of Münster, Einsteinstraße 62, 48149 Münster, Germany.
Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030 USA.
Lukas ter Maat
University of Twente, 7522 NB Enschede, The Netherlands.

Funding Information

Funding: The work of the first author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media