Abstract.

We classify all matroids with at most eight elements that have the half-plane property, and we provide a list of some matroids on nine elements that have and that do not have the half-plane property. Furthermore, we prove that several classes of matroids and polynomials that are motivated by the theory of semidefinite programming are closed under taking minors and under passing to faces of the Newton polytope.

Keywords

  1. matroids
  2. half-plane property
  3. spectrahedral representability
  4. matroid polytopes
  5. hyperbolic polynomials
  6. Rayleigh

MSC codes

  1. 05B35
  2. 90C22

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

We thank several anonymous referees for providing helpful comments on the paper.

Supplementary Materials

Index of Supplementary Materials
Title of paper: Matroids on Eight Elements with the Half-Plane Property and Related Concepts
Authors: Mario Kummer and Büşra Sert
File: M149064_01.pdf
Type: pdf file
Contents: Additional explanation on the source code for tests and tables to support some results in the main text.
File: M149064_02.zip
Type: Compressed Code Files
Contents: Macaulay2 code for tests on matroids on 8 elements and for creating symbolic certificates. Sage code for the comparison of minors of matroids and the cataloge of matroids in sage. Julia code for finding and evaluating critical points for matroids on 9 elements.

References

1.
N. Amini and P. Brändén, Non-representable hyperbolic matroids, Adv. Math., 334 (2018), pp. 417–449, https://doi.org/10.1016/j.aim.2018.03.038.
2.
G. Blekherman, P. A. Parrilo, and R. R. Thomas, eds., Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optimization 13, Society for Industrial and Applied Mathematics and Mathematical Optimization Society, Philadelphia, 2013.
3.
J. Borcea, P. Brändén, and T. M. Liggett, Negative dependence and the geometry of polynomials, J. Amer. Math. Soc., 22 (2009), pp. 521–567, https://doi.org/10.1090/S0894-0347-08-00618-8.
4.
P. Brändén, Polynomials with the half-plane property and matroid theory, Adv. Math., 216 (2007), pp. 302–320.
5.
P. Brändén, Obstructions to determinantal representability, Adv. Math., 226 (2011), pp. 1202–1212, https://doi.org/10.1016/j.aim.2010.08.003.
6.
P. Breiding and S. Timme, Homotopycontinuation.jl: A package for homotopy continuation in Julia, in Mathematical Software—ICMS 2018, J. H. Davenport, M. Kauers, G. Labahn, and J. Urban, eds., Springer International Publishing, Cham, Switzerland, 2018, pp. 458–465.
7.
S. Burton, C. Vinzant, and Y. Youm, A Real Stable Extension of the Vámos Matroid Polynomial, preprint, arXiv:1411.2038, 2014.
8.
J. Chen, Matroids: A Package for Computations with Matroids, available online from https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
9.
J. Chen, Matroids: A Macaulay2 package, J. Softw. Algebra Geom., 9 (2019), pp. 19–27.
10.
Y.-B. Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner, Homogeneous multivariate polynomials with the half-plane property, Adv. Appl. Math., 32 (2004), pp. 88–187.
11.
D. Cifuentes, T. Kahle, P. A. Parrilo, and H. Peyrl, SumsOfSquares, Version 2.1, available online from https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
12.
D. Cifuentes, T. Kahle, P. A. Parrilo, and H. Peyrl, Sums of squares in Macaulay2, J. Softw. Algebra Geom., 10 (2020), pp. 17–24.
13.
W. A. Stein and D. Joyner, Sage Mathematics Software, Version 9.2, Sage Development Team, 2020, https://www.sagemath.org.
14.
L. Garding, An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), pp. 957–965.
15.
I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. Math., 63 (1987), pp. 301–316, https://doi.org/10.1016/0001-8708(87)90059-4.
16.
I. M. Gelfand and V. V. Serganova, Combinatorial geometries and the strata of a torus on homogeneous compact manifolds, Uspekhi Mat. Nauk, 42 (1987), pp. 107–134, 287.
17.
D. R. Grayson and M. E. Stillman, Macaulay2, a Software System for Research in Algebraic Geometry, https://macaulay2.com/.
18.
J. Huh, B. Schröter, and B. Wang, Correlation bounds for fields and matroids, J. Eur. Math. Soc., 24 (2022), pp. 1335–1351, https://doi.org/10.4171/jems/1119.
19.
M. Kummer, A note on the hyperbolicity cone of the specialized Vámos polynomial, Acta Appl. Math., 144 (2016), pp. 11–15, https://doi.org/10.1007/s10440-015-0036-z.
20.
M. Kummer, Determinantal representations and Bézoutians, Math. Z., 285 (2017), pp. 445–459, https://doi.org/10.1007/s00209-016-1715-9.
21.
M. Kummer, Spectral linear matrix inequalities, Adv. Math., 384 (2021), 107749, https://doi.org/10.1016/j.aim.2021.107749.
22.
M. Kummer, D. Plaumann, and C. Vinzant, Hyperbolic polynomials, interlacers, and sums of squares, Math. Program., 153 (2015), pp. 223–245, https://doi.org/10.1007/s10107-013-0736-y.
23.
Y. Matsumoto, S. Moriyama, H. Imai, and D. Bremner, Matroid enumeration for incidence geometry, Discrete Comput. Geom., 47 (2011), pp. 17–43, https://doi.org/10.1007/s00454-011-9388-y.
24.
D. Mayhew and G. F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B, 98 (2008), pp. 415–431, https://doi.org/10.1016/j.jctb.2007.07.005.
25.
K. Murota, Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2003, https://doi.org/10.1137/1.9780898718508.
26.
P. Nelson and J. van der Pol, Doubly exponentially many Ingleton matroids, SIAM J. Discrete Math., 32 (2018), pp. 1145–1153, https://doi.org/10.1137/17M1160094.
27.
J. Oxley, Matroid Theory, 2nd ed., Oxford Graduate Texts in Mathematics 21, Oxford University Press, Oxford, 2011, https://doi.org/10.1093/acprof:oso/9780198566946.001.0001.
28.
J. Saunderson, Certifying polynomial nonnegativity via hyperbolic optimization, SIAM J. Appl. Algebra Geom., 3 (2019), pp. 661–690, https://doi.org/10.1137/19M1253551.
29.
V. Vinnikov, LMI representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: Past, present, and future, in Mathematical Methods in Systems, Optimization, and Control, Operator Theory Advances and Applications 222, Birkhäuser-Verlag, Basel, Switzerland, 2012, pp. 325–349, https://doi.org/10.1007/978-3-0348-0411-0.
30.
D. G. Wagner, Matroid inequalities from electrical network theory, Electron. J. Combin., 11 (2004–2006), A1, http://www.combinatorics.org/Volume_11/Abstracts/v11i2a1.html.
31.
D. G. Wagner, Rank-three matroids are Rayleigh, Electron. J. Combin., 12 (2005), N8, http://www.combinatorics.org/Volume_12/Abstracts/v12i1n8.html.
32.
D. G. Wagner and Y. Wei, A criterion for the half-plane property, Discrete Math., 309 (2009), pp. 1385–1390, https://doi.org/10.1016/j.disc.2008.02.005.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2208 - 2227
ISSN (online): 1095-7146

History

Submitted: 19 April 2022
Accepted: 11 May 2023
Published online: 25 September 2023

Keywords

  1. matroids
  2. half-plane property
  3. spectrahedral representability
  4. matroid polytopes
  5. hyperbolic polynomials
  6. Rayleigh

MSC codes

  1. 05B35
  2. 90C22

Authors

Affiliations

Technische Universität Dresden, Dresden 01069, Germany.
Technische Universität Dresden, Dresden 01069, Germany.

Funding Information

Funding: Both authors have been supported by the DFG under grant 421473641.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media