Abstract.

Traveling waves propagating on a taut cable resting on an elastic substrate are investigated by an equivalent mechanical model based on the classical Klein–Gordon equation. The formulation is devised for an elastic response of generally arbitrary shape, and permits one to compute the propagation wave velocity without solving the equation of motion, thus providing a unified theoretical framework for a large class of response functions, linear or nonlinear, smooth or nonsmooth. The general solution is then applied to the cases of a general polynomial substrate, a bilinear substrate, a bilinear substrate with a cubic correction, and a negative linear stiffness substrate, all of them falling within the realm of nonsmooth systems when a piecewise continuous stiffness is chosen; in the second one, we recover results present in the literature and obtained by employing a method based on matching conditions, which are spared in the approach used in this paper. Finally, the application to the sine-Gordon equation is considered.

Keywords

  1. Klein–Gordon equation
  2. nonsmooth systems
  3. periodic traveling waves

MSC codes

  1. 35B10
  2. 74J30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Alves, F. Natali, and A. Pastor, Sufficient conditions for orbital stability of periodic traveling waves, J. Differential Equations, 267 (2019), pp. 879–901, https://doi.org/10.1016/j.jde.2019.01.029.
2.
I. Andrianov, J. Awrejcewicz, and V. Danishevskyy, Linear and Nonlinear Waves in Microstructured Solids Homogenization and Asymptotic Approaches, CRC Press, Boca Raton, FL, 2021, https://doi.org/10.1201/9781003146162.
3.
K. Bataille and F. Lund, Nonlinear waves in elastic media, Phys. D, 6 (1982), pp. 95–104, https://doi.org/10.1016/0167-2789(82)90007-0.
4.
H. Berjamin, N. Favrie, B. Lombard, and G. Chiavassa, Nonlinear waves in solids with slow dynamics: An internal-variable model, Proc. A, 473 (2017), 20170024, https://doi.org/10.1098/rspa.2017.0024.
5.
H. Berjamin, B. Lombard, G. Chiavassa, and N. Favrie, Analytical solution to 1d nonlinear elastodynamics with general constitutive laws, Wave Motion, 74 (2017), pp. 35–55, https://doi.org/10.1016/j.wavemoti.2017.06.006.
6.
W.-J. Beyn, D. Otten, and J. Rottmann-Matthes, Computation and stability of traveling waves in second order evolution equations, SIAM J. Numer. Anal., 56 (2018), pp. 1786–1817, https://doi.org/10.1137/16M108286X.
7.
M. Buchanan and J. J. Dorning, Nonlinear waves in collisionless plasmas, Phys. Lett. A, 174 (1993), pp. 306–310, https://doi.org/10.1016/0375-9601(93)90683-Q.
8.
H. Cai and R. Chadwick, Radial structure of traveling waves in the inner ear, SIAM J. Appl. Math., 63 (2003), pp. 1105–1120, https://doi.org/10.1137/S0036139901388957.
9.
L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser, New York, 2012.
10.
L. Demeio and S. Lenci, Periodic traveling waves in a taut cable on a bilinear elastic substrate, Appl. Math. Model., 110 (2022), pp. 603–617, https://doi.org/10.1016/j.apm.2022.06.009.
11.
S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), pp. 1057–1078, https://doi.org/10.1137/0146063.
12.
J. Engelbrecht, A. Berezovski, and A. Salupere, Nonlinear deformation waves in solids and dispersion, Wave Motion, 44 (2007), pp. 493–500, https://doi.org/10.1016/j.wavemoti.2007.02.006.
13.
A. Gedroits and V. Krasilnikov, Finite-amplitude elastic waves in solids and deviations from Hooke’s law, J. Exp. Theor. Phys., 43 (1962), pp. 1592–1599.
14.
K. Graff, Wave Motion in Elastic Solids, Dover, New York, 2012.
15.
P. Gravel and C. Gauthier, Classical applications of the Klein-Gordon equation, Amer. J. Phys., 79 (2011), pp. 447–453, https://doi.org/10.1119/1.3559500.
16.
M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), pp. 160–197, https://doi.org/10.1016/0022-1236(87)90044-9.
17.
Y. M. Huang, C. M. Krousgrill, and A. K. Bajaj, Dynamic behavior of offshore structures with bilinear stiffness, J. Fluid Struct., 3 (1989), pp. 405–422.
18.
A. Jeffrey and J. Engelbrecht, Nonlinear Waves in Solids, CISM Courses and Lect. 341, Springer, Vienna, 1994.
19.
M. A. Johnson, Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg-de Vries equation, SIAM J. Math. Anal., 41 (2009), pp. 1921–1947, https://doi.org/10.1137/090752249.
20.
K. Khusnutdinova, Y. Fu, R. Grimshaw, and F. Pastrone, Special issue of Wave Motion—“Nonlinear waves in solids: In memory of Alexander M. Samsonov”, Wave Motion, 92 (2020), 102379, https://doi.org/10.1016/j.wavemoti.2019.10237.
21.
H. Kolsky, Stress Waves in Solids, Dover, New York, 1963.
22.
S. Lenci, Propagation of periodic waves in beams on a bilinear foundation, Int. J. Mech. Sci., 207 (2022), 106656, https://doi.org/10.1016/j.ijmecsci.2021.106656.
23.
H. Li, Y. Li, and J. Li, Negative stiffness devices for vibration isolation applications: A review, Adv. Struct. Eng., 23 (2020), pp. 1739–1755, https://doi.org/10.1177/1369433219900311.
24.
T. Li and Z.-an Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), pp. 1522–1541, https://doi.org/10.1137/09075161X.
25.
A. Metrikine, Steady state response of an infinite string on a non-linear visco-elastic foundation to moving point loads, J. Sound Vib., 272 (2004), pp. 1033–1046, https://doi.org/10.1016/j.jsv.2003.04.001.
26.
V. Mozhaev, A new type of surface acoustic waves in solids due to nonlinear elasticity, Phys. Lett. A, 139 (1989), pp. 333–337, https://doi.org/10.1016/0375-9601(89)90463-5.
27.
C. Nucera and F. Lanza di Scalea, Nonlinear wave propagation in constrained solids subjected to thermal loads, J. Sound Vib., 333 (2014), pp. 541–554, https://doi.org/10.1016/j.jsv.2013.09.018.
28.
A. Porubov, Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003.
29.
J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Commun. Math. Phys., 91 (1983), pp. 313–327.
30.
B. Shi, J. Yang, and C. Rudd, On vibration transmission in oscillating systems incorporating bilinear stiffness and damping elements, Int. J. Mech. Sci., 150 (2019), pp. 458–470, https://doi.org/10.1016/j.ijmecsci.2018.10.031.
31.
Y. Shui and I. Solodov, Nonlinear properties of Rayleigh and Stoneley waves in solids, J. Appl. Phys., 64 (1988), pp. 6155–6165, https://doi.org/10.1063/1.342120.
32.
M. Stanislavova and A. Stefanov, Linear stability analysis for traveling waves of second order in time PDEs, Nonlinearity, 25 (2012), pp. 2625–2654, https://doi.org/10.1088/0951-7715/25/9/2625.
33.
Y. Weitsman, On foundations that act in compression only, J. Appl. Mech., 37 (1970), pp. 1029–1030.
34.
G. B. Whitham, Non-linear dispersive waves, Proc. A, 283 (1965), pp. 238–261.
35.
D. Z. Yankelkevsky, M. Eisenberger, and M. A. Adin, Analysis of beams on nonlinear Winkler foundation, Comput. Struct., 31 (1989), pp. 287–292.
36.
L. Zarembo and V. Krasilnikov, Nonlinear phenomena in the propagation of elastic waves in solids, Sov. Phys. Uspekhi, 13 (1971), pp. 778–797, https://doi.org/10.1070/PU1971v013n06ABEH004281.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1 - 24
ISSN (online): 1095-712X

History

Submitted: 15 June 2022
Accepted: 5 October 2022
Published online: 25 January 2023

Keywords

  1. Klein–Gordon equation
  2. nonsmooth systems
  3. periodic traveling waves

MSC codes

  1. 35B10
  2. 74J30

Authors

Affiliations

DIISM, Università Politecnica delle Marche, Ancona, Italy.
DICEA, Università Politecnica delle Marche, Ancona, Italy.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media