Abstract.

We propose and analyze a mixed precision parareal algorithm that uses for the fine propagator \(\mathcal{F}\) and the coarse propagator \(\mathcal{G}\) a high precision \({\epsilon }_h\) and a low \({\epsilon }_l (\gg{\epsilon }_h)\) , respectively. This paradigm potentially provides faster and more energy efficient coarse grid correction for parareal, compared to the original paradigm, which uses a uniform precision for both \(\mathcal{G}\) and \(\mathcal{F}\) . Low precision is also beneficial to reduce communication and memory costs, since we have to move and store fewer bits. Let \(\widehat{\rho }\) and \(\rho\) be, respectively, the decaying rate of the error of the parareal algorithm in the mixed and uniform precision modes. We perform a convergence analysis for the mixed precision parareal algorithm. The derived convergence rates are dependent on the precision of the coarse propagator and the number of coarse time steps \(N_t\) . Numerical results indicate that the converged solution of the mixed precision parareal algorithm attains the desired high precision \({\epsilon }_h\) , while degeneration of the convergence rate is indeed observed in some worst case scenario, such as the situation that we use a half precision for \(\mathcal{G}\) and \(N_t\) is very large.

Keywords

  1. parareal algorithm
  2. mixed precision computation
  3. coarse grid correction
  4. convergence analysis
  5. backward error analysis

MSC codes

  1. 65M55
  2. 65M12
  3. 65M15
  4. 65Y05

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgment.

The authors are very grateful to the anonymous referees for the careful reading of a preliminary version of the manuscript and their valuable suggestions and comments, which greatly improved the quality of this paper.
The work of Shu-Lin Wu was supported by Jilin Provincial Department of Science and Technology (YDZJ202201ZYTS593).

References

1.
A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, and A. YarKhan, Linear algebra software for large-scale accelerated multicore computing, Acta Numer., 25 (2016), pp. 1–160.
2.
A. Abdelfattah, H. Anzt, E. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates, N. J. Higham, X. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. Tsai, and U. M. Yang, A survey of numerical linear algebra methods utilizing mixed-precision arithmetic, Int. J. High Perform. Comput. Appl., 35 (2021), pp. 1–26.
3.
Advanpix, Multiprecision Computing Toolbox, http://www.advanpix.com.
4.
P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B. Vieuble, Five-Precision GMRES-Based Iterative Refinement, MIMS EPrint 2021.5, Manchester Institute for Mathematical Sciences, The University of Manchester, Manchester, UK, 2021.
5.
J. Angel, S. Götschel, and D. Ruprecht, Impact of Spatial Coarsening on Parareal Convergence, http://arxiv.org/abs/2111.10228v1, 2021.
6.
P. Blanchard, N. J. Higham, and T. Mary, A class of fast and accurate summation algorithms, SIAM J. Sci. Comput., 42 (2020), pp. A1541–A1557.
7.
E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative refinement in three precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847.
8.
E. Carson and N. J. Higham, A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39 (2017), pp. A2834–A2856.
9.
E. Carson and N. Khan, Mixed Precision Iterative Refinement with Sparse Approximate Inverse Preconditioning, https://arxiv.org/abs/2202.10204, 2022.
10.
M. P. Connolly, N. J. Higham, and T. Mary, Stochastic rounding and its probabilistic backward error analysis, SIAM J. Sci. Comput., 43 (2021), pp. A566–A585.
11.
X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A52–A78.
12.
J. E. Dennis and H. F. Walker, Inaccuracy in quasi-Newton methods: Local improvement theorems, in Mathematical Programming at Oberwolfach II, Math. Program. Stud. 22, North-Holland, Amsterdam, 1984, pp. 70–85.
13.
M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105–132.
14.
R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635–C661.
15.
C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications, Internat. J. Numer. Methods Engrg., 58 (2003), pp. 1397–1434.
16.
M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds., Springer, Cham, 2015, pp. 69–113.
17.
M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput., 29 (2007), pp. 556–578.
18.
M. J. Gander and S. L. Wu, Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique, Numer. Math., 143 (2019), pp. 489–527.
19.
M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering, XVII, Lect. Notes Comput. Sci. Eng. 60, 2008, pp. 45–56.
20.
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, PA, 2002.
21.
N. Higham and T. Mary, Mixed precision algorithms in numerical linear algebra, Acta Numer., 31 (2022), pp. 347–414.
22.
A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC’18, IEEE Press, Piscataway, NJ, 2018, pp. 603–613, https://doi.org/10.1109/SC.2018.00050.
23.
A. Haidar, P. Wu, S. Tomov, and J. Dongarra, Investigating half precision arithmetic to accelerate dense linear system solvers, in Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA’17, ACM, New York, 2017, pp. 1–8, https://doi.org/10.1145/3148226.3148237.
24.
A. Howse, H. Sterck, R. Falgout, S. MacLachlan, and J. Schroder, Parallel-in-time multigrid with adaptive spatial coarsening for the linear advection and inviscid Burgers equations, SIAM J. Sci. Comput., 41 (2019), pp. A538–A565.
25.
J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra, Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems), in Proceedings of the ACM/IEEE Conference on Supercomputing, 2006, https://doi.org/10.1109/SC.2006.30.
26.
J.-L. Lions, Y. Maday, and G. Turinici, A “parareal” in time discretization of PDEs, C. R. Math., 332 (2001), pp. 661–668.
27.
J. Liu and S. L. Wu, A fast block \(\alpha\) -circulant preconditioner for all-at-once systems from wave equations, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 1912–1943.
28.
Y. Maday and O. Mula, An adaptive parareal algorithm, J. Comput. Appl. Math., 377 (2020), 112915.
29.
F. Magoulès and G. Gbikpi-Benissan, Asynchronous parareal time discretization for partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. C704–C725.
30.
E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. A1012–A1033.
31.
S. F. Mccormick, J. Benzaken, and R. Tamstorf, Algebraic error analysis for mixed-precision multigrid solvers, SIAM J. Sci. Comput., 43 (2021), pp. S392–S419.
32.
H. Nguyen and R. Tsai, A stable parareal-like method for the second order wave equation, J. Comput. Phys., 405 (2020), 109156.
33.
B. W. Ong and J. B. Schroder, Applications of time parallelization, Comput. Vis. Sci., 23 (2020), 11.
34.
B. S. Southworth, W. Mitchell, A. Hessenthaler, and F. Danieli, Tight two-level convergence of linear parareal and MGRIT: Extensions and implications in practice, Springer Proc. Math. Stat., 356 (2021), pp. 1–31.
35.
R. Tamstorf, J. Benzaken, and S. McCormick, Discretization-error-accurate mixed-precision multigrid solvers, SIAM J. Sci. Comput., 43 (2021), pp. S420–S447.
36.
S. L. Wu and T. Zhou, Convergence analysis of three parareal solvers, SIAM J. Sci. Comput., 37 (2015), pp. A970–A992.
37.
S. L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci. Comput., 40 (2018), pp. A1446–A1472.
38.
S. L. Wu, Convergence analysis of some second-order Parareal algorithms, IMA J. Numer. Anal., 35 (2015), pp. 1315–1341.
39.
S. L. Wu, Convergence analysis of the Parareal-Euler algorithm for systems of ODEs with complex eigenvalues, J. Sci. Comput., 67 (2016), pp. 644–668.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A2483 - A2510
ISSN (online): 1095-7197

History

Submitted: 19 July 2022
Accepted: 23 March 2023
Published online: 22 September 2023

Keywords

  1. parareal algorithm
  2. mixed precision computation
  3. coarse grid correction
  4. convergence analysis
  5. backward error analysis

MSC codes

  1. 65M55
  2. 65M12
  3. 65M15
  4. 65Y05

Authors

Affiliations

National Center for Applied Mathematics in Hunan, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, China.
Zhiyong Wang
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Corresponding author. School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, China.

Funding Information

Hunan National Applied Mathematics Center: 2020ZYT003
Funding: The work of the first author was supported by NSFC (11971414) and by the Hunan National Applied Mathematics Center (2020ZYT003). The work of the third author was supported by NSFC (12171080, 12292982) and by the Natural Science Foundation of Jilin Province (JC010284408).

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media