Abstract.

Sampling the phase space of molecular systems—and, more generally, of complex systems effectively modeled by stochastic differential equations (SDEs)—is a crucial modeling step in many fields, from protein folding to materials discovery. These problems are often multiscale in nature: they can be described in terms of low-dimensional effective free energy surfaces parametrized by a small number of “slow” reaction coordinates; the remaining “fast” degrees of freedom populate an equilibrium measure conditioned on the reaction coordinate values. Sampling procedures for such problems are used to estimate effective free energy differences as well as ensemble averages with respect to the conditional equilibrium distributions; these latter averages lead to closures for effective reduced dynamic models. Over the years, enhanced sampling techniques coupled with molecular simulation have been developed; they often use knowledge of the system order parameters in order to sample the corresponding conditional equilibrium distributions, and estimate ensemble averages of observables. An intriguing analogy arises with the field of machine learning (ML), where generative adversarial networks (GANs) can produce high-dimensional samples from low-dimensional probability distributions. This sample generation is what in equation-free multiscale modeling is called a “lifting process”: it returns plausible (or realistic) high-dimensional space realizations of a model state, from information about its low-dimensional representation. In this work, we elaborate on this analogy, and we present an approach that couples physics-based simulations and biasing methods for sampling conditional distributions with ML-based conditional generative adversarial networks (cGANs) for the same task. The “coarse descriptors” on which we condition the fine scale realizations can either be known a priori or learned through nonlinear dimensionality reduction (here, using diffusion maps). We suggest that this may bring out the best features of both approaches: we demonstrate that a framework that couples cGANs with physics-based enhanced sampling techniques can improve multiscale SDE dynamical systems sampling, and even shows promise for systems of increasing complexity (here, simple molecules).

Keywords

  1. generative adversarial networks
  2. multiscale methods
  3. stochastic dynamical systems
  4. dimensional reduction
  5. molecular simulation

MSC codes

  1. 37M05
  2. 60H10
  3. 68T07
  4. 82-08
  5. 82C32

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
K. Pearson, On lines and planes of closest fit to systems of points in space, London Edinburgh Dublin Philos. Mag. J. Sci., 2 (1901), pp. 559–572.
2.
M. A. Kramer, Nonlinear principal component analysis using autoassociative neural networks, Aiche. J., 37 (1991), pp. 233–243.
3.
J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319–2323.
4.
S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, 290 (2000), pp. 2323–2326.
5.
R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), pp. 5–30.
6.
G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys., 23 (1977), pp. 187–199.
7.
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Networks, https://arxiv.org/abs/1406.2661, 2014.
8.
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-Based Generative Modeling through Stochastic Differential Equations, https://arxiv.org/abs/2011.13456, 2020.
9.
Y. Song and S. Ermon, Improved Techniques for Training Score-Based Generative Models, https://arxiv.org/abs/2006.09011, 2020.
10.
P. Dhariwal and A. Nichol, Diffusion Models Beat GANs on Image Synthesis, https://arxiv.org/abs/2105.05233, 2021.
11.
C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, J. Comput. Phys., 321 (2016), pp. 242–258.
12.
C. Soize and R. Ghanem, Probabilistic learning on manifolds, Found. Data Sci., 2 (2020), pp. 279–307.
13.
T. Karras, S. Laine, and T. Aila, A Style-Based Generator Architecture for Generative Adversarial Networks, https://arxiv.org/abs/1812.04948, 2019.
14.
M. Mirza and S. Osindero, Conditional Generative Adversarial Nets, arXiv:1411.1784, 2014.
15.
R. W. Zwanzig, High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys., 22 (1954), pp. 1420–1426.
16.
E. Darve, D. Rodríguez-Gómez, and A. Pohorille, Adaptive biasing force method for scalar and vector free energy calculations, J. Chem. Phys., 128 (2008), 144120.
17.
A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12562–12566.
18.
E. Chiavazzo, R. Covino, R. R. Coifman, C. W. Gear, A. S. Georgiou, G. Hummer, and I. G. Kevrekidis, Intrinsic map dynamics exploration for uncharted effective free-energy landscapes, Proc. Natl. Acad. Sci. USA, 114 (2017), pp. E5494–E5503.
19.
Z. Belkacemi, P. Gkeka, T. Lelièvre, and G. Stoltz, Chasing collective variables using autoencoders and biased trajectories, J. Chem. Theory Comput., 18 (2022), pp. 59–78.
20.
H. Sidky, W. Chen, and A. L. Ferguson, Molecular latent space simulators, Chem. Sci., 11 (2020), pp. 9459–9467.
21.
S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, J. Comput. Chem., 13 (1992), pp. 1011–1021.
22.
M. R. Shirts and J. D. Chodera, Statistically optimal analysis of samples from multiple equilibrium states, J. Chem. Phys., 129 (2008), 124105.
23.
R. R. Coifman and S. Lafon, Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions, Appl. Comput. Harmon. Anal., 21 (2006), pp. 31–52.
24.
F. Dietrich, J. M. Bello-Rivas, and I. G. Kevrekidis, On the Correspondence between Gaussian Processes and Geometric Harmonics, https://arxiv.org/abs/2110.02296, 2021.
25.
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), MIT Press, Cambridge, MA, 2005.
26.
J. Wang and A. L. Ferguson, Nonlinear machine learning in simulations of soft and biological materials, Mol. Simulat., 44 (2018), pp. 1090–1107.
27.
D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114, 2013.
28.
W. Zheng, M. A. Rohrdanz, and C. Clementi, Rapid exploration of configuration space with diffusion-map-directed molecular dynamics, J. Phys. Chem. B, 117 (2013), pp. 12769–12776.
29.
C. R. Laing, T. A. Frewen, and I. G. Kevrekidis, Coarse-grained dynamics of an activity bump in a neural field model, Nonlinearity, 20 (2007), pp. 2127–2146.
30.
A. W. Long and A. L. Ferguson, Rational design of patchy colloids via landscape engineering, Mol. Syst. Des. Eng., 3 (2018), pp. 49–65.
31.
M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, in Proceedings of the 34th International Conference on Machine Learning, D. Precup and Y. W. Teh, eds., Proc. Mach. Learn. Res. 70, PMLR, 2017, pp. 214–223.
32.
X. Ding, Y. Wang, Z. Xu, W. J. Welch, and Z. J. Wang, CcGAN: Continuous conditional generative adversarial networks for image generation, in International Conference on Learning Representations, 2021.
33.
P. C. Mahalanobis, On the generalized distance in statistics, Proc. Nat. Inst. Sci. India, 2 (1936), pp. 49–55.
34.
A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps, Appl. Comput. Harmon. Anal., 25 (2008), pp. 226–239.
35.
C. J. Dsilva, C. W. G. Ronen Talmon, R. R. Coifman, and I. G. Kevrekidis, Data-driven reduction for a class of multiscale fast-slow stochastic dynamical systems, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1327–1351, https://doi.org/10.1137/151004896.
36.
K. Itô, Stochastic integral, Proc. Imperial Acad., 20 (1944), pp. 519–524.
37.
P. R. Vlachas, J. Zavadlav, M. Praprotnik, and P. Koumoutsakos, Accelerated simulations of molecular systems through learning of effective dynamics, J. Chem. Theory Comput., 18 (2022), pp. 538–549.
38.
V. Mironov, Y. Alexeev, V. K. Mulligan, and D. G. Fedorov, A systematic study of minima in alanine dipeptide, J. Comput. Chem., 40 (2019), pp. 297–309.
39.
W. Kabsch, A solution for the best rotation to relate two sets of vectors, Acta Crystallogr. A, 32 (1976), pp. 922–923.
40.
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis, Commun. Math. Sci., 1 (2003), pp. 715–762.
41.
A. S. Georgiou, J. M. Bello-Rivas, C. W. Gear, H.-T. Wu, E. Chiavazzo, and I. G. Kevrekidis, An exploration algorithm for stochastic simulators driven by energy gradients, Entropy, 19 (2017), 294.
42.
R. Z. Khas’minskii, The averaging principle for stochastic differential equations, Probl. Peredachi Inf., 4 (1968), pp. 86–87.
43.
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren Math. Wiss. 260, Springer, Berlin, 2012.
44.
E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci., 1 (2003), pp. 385–391.
45.
F. Legoll and T. Lelièvre, Effective dynamics using conditional expectations, Nonlinearity, 23 (2010), pp. 2131–2163.
46.
C. Hartmann, L. Neureither, and U. Sharma, Coarse graining of nonreversible stochastic differential equations: Quantitative results and connections to averaging, SIAM J. Math. Anal., 52 (2020), pp. 2689–2733, https://doi.org/10.1137/19M1299852.
47.
C. W. Gear, T. J. Kaper, I. G. Kevrekidis, and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 711–732, https://doi.org/10.1137/040608295.
48.
C. Vandekerckhove, B. Sonday, A. Makeev, D. Roose, and I. G. Kevrekidis, A common approach to the computation of coarse-scale steady states and to consistent initialization on a slow manifold, Comput. Chem. Eng., 35 (2011), pp. 1949–1958.
49.
G. Maruyama, Continuous Markov processes and stochastic equations, Rendiconti del Circolo Matematico di Palermo, 4 (1955), pp. 48–90.
50.
P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande, OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLOS Comput. Biol., 13 (2017), pp. 1–17.
51.
D. Case, V. Babin, J. Berryman, R. Betz, Q. Cai, D. Cerutti, T. Cheatham, T. Darden, R. Duke, H. Gohlke, A. Götz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T.-S. Lee, S. Legrand, and P. Kollman, Amber 14, University of California, San Francisco, CA, 2014.
52.
J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, and A. Onufriev, Generalized born model with a simple, robust molecular volume correction, J. Chem. Theory Comput., 3 (2007), pp. 156–169.
53.
The Plumed Consortium, Promoting transparency and reproducibility in enhanced molecular simulations, Nat. Methods, 16 (2019), pp. 670–673.
54.
G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi, Plumed 2: New feathers for an old bird, Comput. Phys. Commun., 185 (2014), pp. 604–613.
55.
M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, and M. Parrinello, Plumed: A portable plugin for free-energy calculations with molecular dynamics, Comput. Phys. Commun., 180 (2009), pp. 1961–1972.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 1122 - 1146
ISSN (online): 1540-3467

History

Submitted: 24 August 2022
Accepted: 18 April 2023
Published online: 14 August 2023

Keywords

  1. generative adversarial networks
  2. multiscale methods
  3. stochastic dynamical systems
  4. dimensional reduction
  5. molecular simulation

MSC codes

  1. 37M05
  2. 60H10
  3. 68T07
  4. 82-08
  5. 82C32

Authors

Affiliations

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.
Juan M. Bello-Rivas
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.
Andrew L. Ferguson
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637 USA.
Ioannis G. Kevrekidis Contact the author
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.

Funding Information

Funding: This work was partially supported by Multi-University Research Initiative grants, by the US Army Research Office, and by the US Air Force Office of Scientific Research.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media