Abstract.

We extend the recently introduced genetic column generation algorithm for high-dimensional multimarginal optimal transport from symmetric to general problems. We use the algorithm to calculate accurate mesh-free Wasserstein barycenters and cubic Wasserstein splines.

Keywords

  1. optimal transport
  2. column generation
  3. high dimension
  4. genetic algorithm

MSC codes

  1. 65K
  2. 90C06

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43 (2011), pp. 904–924.
2.
M. Aps, The MOSEK Optimization Toolbox for MATLAB Manual. Version 9.3, 2021, https://docs.mosek.com/9.3/toolbox/index.html.
3.
M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, in Proceedings of the International Conference on Machine Learning, 2017, pp. 214–223.
4.
J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37 (2015), pp. A1111–A1138.
5.
J.-D. Benamou, T. O. Gallouët, and F.-X. Vialard, Second-order models for optimal transport and cubic splines on the Wasserstein space, Found. Comput. Math., 19 (2019), pp. 1113–1143.
6.
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), pp. 375–417.
7.
Y. Chen, G. Conforti, and T. T. Georgiou, Measure-valued spline curves: An optimal transport viewpoint, SIAM J. Math. Anal., 50 (2018), pp. 5947–5968.
8.
M. Colombo, L. De Pascale, and S. Di Marino, Multimarginal optimal transport maps for one-dimensional repulsive costs, Canad. J. Math., 67 (2015), pp. 350–368.
9.
M. Cuturi and A. Doucet, Fast computation of Wasserstein barycenters, in Proceedings of the International Conference on Machine Learning, 2014, pp. 685–693.
10.
M. Cuturi and G. Peyré, A smoothed dual approach for variational Wasserstein problems, SIAM J. Imaging Sci., 9 (2016), pp. 320–343.
11.
L. E. Dubins, On extreme points of convex sets, J. Math. Anal. Appl., 5 (1962), pp. 237–244.
12.
G. Friesecke, A simple counterexample to the Monge ansatz in multimarginal optimal transport, convex geometry of the set of Kantorovich plans, and the Frenkel-Kontorova model, SIAM J. Math. Anal., 51 (2019), pp. 4332–4355.
13.
G. Friesecke, P. Gori-Giorgi, and A. Gerolin, The Strong-Interaction Limit of Density Functional Theory, preprint, arXiv:2202.09760, 2022.
14.
G. Friesecke and M. Penka, Convergence Proof for the GenCol Algorithm in the Case of Two-Marginal Optimal Transport, preprint, arXiv:2303.07137, 2023.
15.
G. Friesecke, A. S. Schulz, and D. Vögler, Genetic column generation: Fast computation of high-dimensional multimarginal optimal transport problems, SIAM J. Sci. Comput., 44 (2022), pp. A1632–A1654.
16.
G. Friesecke and D. Vögler, Breaking the curse of dimension in multi-marginal Kantorovich optimal transport on finite state spaces, SIAM J. Math. Anal., 50 (2018), pp. 3996–4019.
17.
W. Gangbo and A. Świȩch, Optimal maps for the multidimensional Monge-Kantorovich problem, Comm. Pure Appl. Math., 51 (1998), pp. 23–45.
18.
A. Gerolin, A. Kausamo, and T. Rajala, Nonexistence of optimal transport maps for the multimarginal repulsive harmonic cost, SIAM J. Math. Anal., 51 (2019), pp. 2359–2371.
19.
B. Grünbaum, Convex Polytopes, Springer, New York, 2003, https://doi.org/10.1007/978-1-4613-0019-9.
20.
F. Heinemann, A. Munk, and Y. Zemel, Randomized Wasserstein barycenter computation: Resampling with statistical guarantees, SIAM J. Math. Data Sci., 4 (2022), pp. 229–259.
21.
Y. LeCun, C. Cortes, and C. J. Burges, MNIST Handwritten Digit Database, http://yann.lecun.com/exdb/mnist (accessed 2021-10-01).
22.
L. Nenna, Numerical Methods for Multi-Marginal Optimal Transportation, Ph.D. thesis, Université Paris Sciences et Lettres, 2016.
23.
B. Pass, Multi-marginal optimal transport: Theory and applications, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 1771–1790.
24.
G. Peyré, M. Cuturi, et al., Computational optimal transport: With applications to data science, Found. Trends Mach. Learn., 11 (2019), pp. 355–607.
25.
B. Schmitzer, Stabilized sparse scaling algorithms for entropy regularized transport problems, SIAM J. Sci. Comput., 41 (2019), pp. A1443–A1481.
26.
L. Yang, J. Li, D. Sun, and K.-C. Toh, A fast globally linearly convergent algorithm for the computation of Wasserstein barycenters, J. Mach. Learn. Res., 22 (2021), pp. 984–1020.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematics of Data Science
SIAM Journal on Mathematics of Data Science
Pages: 899 - 919
ISSN (online): 2577-0187

History

Submitted: 29 September 2022
Accepted: 23 May 2023
Published online: 25 October 2023

Keywords

  1. optimal transport
  2. column generation
  3. high dimension
  4. genetic algorithm

MSC codes

  1. 65K
  2. 90C06

Authors

Affiliations

Department of Mathematics, Technische Universität München, München, Germany.
Department of Mathematics, Technische Universität München, München, Germany.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.