Abstract.

Reaction-diffusion models with nonlocal constraints naturally arise as limiting cases of coupled bulk-surface models of intracellular signalling. In this paper, a minimal, mass-conserving model of cell-polarization on a curved membrane is analyzed in the limit of slow surface diffusion. Using the tools of formal asymptotics and calculus of variations, we study the characteristic wave-pinning behavior of this system on three dynamical timescales. On the short timescale, generation of an interface separating high- and low-concentration domains is established under suitable conditions. Intermediate timescale dynamics are shown to lead to a uniform growth or shrinking of these domains to sizes that are fixed by global parameters. Finally, the long timescale dynamics reduce to area-preserving geodesic curvature flow that may lead to multi-interface steady state solutions. These results provide a foundation for studying cell polarization and related phenomena in biologically relevant geometries.

Keywords

  1. pattern formation
  2. reaction-diffusion
  3. singular perturbations
  4. Laplace–Beltrami operator
  5. long-time behavior

MSC codes

  1. 35Q92
  2. 35K57
  3. 92C37

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Alfaro and H. Matano, On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), pp. 1639–1649.
2.
L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, G. Buttazzo, A. Marino, and M. Murthy, eds., Springer, Berlin, 2000, pp. 5–93.
3.
J. M. Ball and Y. Şengül, Quasistatic nonlinear viscoelasticity and gradient flows, J. Dynam. Differential Equations, 27 (2015), pp. 405–442.
4.
L. Barberi and K. Kruse, Localized States in Active Fluids, arXiv:2209.02581, 2022.
5.
G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term, Differential Integral Equations, 8 (1995), pp. 735–752.
6.
S. Bialecki, B. Kazmierczak, and T. Lipniacki, Polarization of concave domains by traveling wave pinning, PLOS One, 12 (2017), e0190372.
7.
F. Brauns, H. Weyer, J. Halatek, J. Yoon, and E. Frey, Wavelength selection by interrupted coarsening in reaction-diffusion systems, Phys. Rev. Lett., 126 (2021), 104101.
8.
K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, Dedalus: A flexible framework for numerical simulations with spectral methods, Phys. Rev. Res., 2 (2020), 023068.
9.
A. Buttenschön and L. Edelstein-Keshet, Cell repolarization: A bifurcation study of spatio-temporal perturbations of polar cells, Bull. Math. Biol., 84 (2022), pp. 1–29.
10.
H. Cartan, Calcul Differentiel: I—Calcul differetiel dans les espaces de Banach; II—Equations differentielles (Cours de mathematiques II), Hermann et Cie, Editeurs, Paris, 1967.
11.
X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), pp. 116–141.
12.
X. Chen, Generation and propagation of interfaces in reaction-diffusion systems, Trans. Amer. Math. Soc., 334 (1992), pp. 877–913.
13.
J.-G. Chiou, K. D. Moran, and D. J. Lew, How cells determine the number of polarity sites, eLife, 10 (2021), e58768.
14.
D. Cusseddu, L. Edelstein-Keshet, J. A. Mackenzie, S. Portet, and A. Madzvamuse, A coupled bulk-surface model for cell polarisation, J. Theoret. Biol., 481 (2019), pp. 119–135.
15.
R. Diegmiller, H. Montanelli, C. B. Muratov, and S. Y. Shvartsman, Spherical caps in cell polarization, Biophys. J., 115 (2018), pp. 26–30.
16.
L. Edelstein-Keshet, W. R. Holmes, M. Zajac, and M. Dutot, From simple to detailed models for cell polarization, Philos. Trans. B, 368 (2013), 20130003.
17.
C. M. Elliott and L. Hatcher, Domain formation via phase separation for spherical biomembranes with small deformations, European J. Appl. Math., 32 (2021), pp. 1127–1152.
18.
P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, SIAM, Philadelphia, 1988.
19.
P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), pp. 335–361.
20.
R. Geßele, J. Halatek, L. Würthner, and E. Frey, Geometric cues stabilise long-axis polarisation of PAR protein patterns in C. elegans, Nat. Commun., 11 (2020), pp. 1–12.
21.
D. Ghose, T. Elston, and D. Lew, Orientation of cell polarity by chemical gradients, Annu. Rev. Biophys., 51 (2022), pp. 431–451.
22.
D. Gomez, S. Iyaniwura, F. Paquin-Lefebvre, and M. Ward, Pattern forming systems coupling linear bulk diffusion to dynamically active membranes or cells, Philos. Trans. A, 379 (2021), 20200276.
23.
P. Gross, K. V. Kumar, N. W. Goehring, J. S. Bois, C. Hoege, F. Jülicher, and S. W. Grill, Guiding self-organized pattern formation in cell polarity establishment, Nat. Phys., 15 (2019), pp. 293–300.
24.
J. Halatek and E. Frey, Rethinking pattern formation in reaction-diffusion systems, Nat. Phys., 14 (2018), pp. 507–514.
25.
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, American Mathematical Society, Providence, RI, 1988.
26.
S. Hausberg and M. Röger, Well-posedness and fast-diffusion limit for a bulk-surface reaction-diffusion system, Nonlinear Differ. Equ. Appl., 25 (2018), pp. 1–32.
27.
M. Henry, D. Hilhorst, and C. B. Muratov, A multiple scale pattern formation cascade in reaction-diffusion systems of activator-inhibitor type, Interfaces Free Bound., 20 (2018), pp. 297–336.
28.
H. Howards, M. Hutchings, and F. Morgan, The isoperimetric problem on surfaces, Amer. Math. Monthly, 106 (1999), pp. 430–439.
29.
D. Kamps, J. Koch, V. O. Juma, E. Campillo-Funollet, M. Graessl, S. Banerjee, and T. Mazel, Optogenetic tuning reveals Rho amplification-dependent dynamics of a cell contraction signal network, Cell Rep., 9 (2020), 108467.
30.
C. T. Kelley, I. Kevrekidis, and L. Qiao, Newton-Krylov Solvers for Time-Steppers, arXiv:math/0404374, 2004.
31.
M. Kolář, M. Beneš, and D. Ševčovič, Area preserving geodesic curvature driven flow of closed curves on a surface, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 3671–3689.
32.
J. Li, L. Su, X. Wang, and Y. Wang, Bulk-surface coupling: Derivation of two models, J. Differential Equations, 289 (2021), pp. 1–34.
33.
J. Liu, J. F. Totz, P. W. Miller, A. D. Hastewell, Y.-C. Chao, J. Dunkel, and N. Fakhri, Topological braiding and virtual particles on the cell membrane, Proc. Natl. Acad. Sci. USA, 118 (2021), e2104191118.
34.
A. Madzvamuse, A. H. Chung, and C. Venkataraman, Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems, Proc. A, 471 (2015), 20140546.
35.
C. Mantegazza, Lecture Notes on Mean Curvature Flow, Progr. Math. 290, Birkhäuser, Basel, 2011.
36.
P. W. Miller and J. Dunkel, Gait-optimized locomotion of wave-driven soft sheets, Soft Matter, 16 (2020), pp. 3991–3999.
37.
P. W. Miller, D. Fortunato, C. Muratov, L. Greengard, and S. Shvartsman, Forced and spontaneous symmetry breaking in cell polarization, Nat. Comput. Sci., 2 (2022), pp. 504–511.
38.
P. W. Miller, N. Stoop, and J. Dunkel, Geometry of wave propagation on active deformable surfaces, Phys. Rev. Lett., 120 (2018), 268001.
39.
F. Morgan and D. L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., 49 (2000), pp. 1017–1041.
40.
Y. Mori, A. Jilkine, and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys. J., 94 (2008), pp. 3684–3697.
41.
Y. Mori, A. Jilkine, and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), pp. 1401–1427.
42.
B. Niethammer, M. Röger, and J. J. Velázquez, A bulk-surface reaction-diffusion system for cell polarization, Interfaces Free Bound., 22 (2020), pp. 85–117.
43.
M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki, and S. Kuroda, A mass conserved reaction-diffusion system captures properties of cell polarity, PLOS Comput. Biol., 3 (2007), e108.
44.
F. Paquin-Lefebvre, W. Nagata, and M. J. Ward, Pattern formation and oscillatory dynamics in a two-dimensional coupled bulk-surface reaction-diffusion system, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1334–1390.
45.
A. Pisante and F. Punzo, Allen-Cahn approximation of mean curvature flow in riemannian manifolds, II: Brakke’s flows, Commun. Contemp. Math., 17 (2015), 1450041.
46.
A. Pisante and F. Punzo, Allen-Cahn approximation of mean curvature flow in Riemannian manifolds I, uniform estimates, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15 (2016), pp. 309–341.
47.
W.-J. Rappel and L. Edelstein-Keshet, Mechanisms of cell polarization, Curr. Opin. Syst. Biol., 3 (2017), pp. 43–53.
48.
A. Rätz, Turing-type instabilities in bulk-surface reaction-diffusion systems, J. Comput. Appl. Math., 289 (2015), pp. 142–152.
49.
A. Rätz and M. Röger, Symmetry breaking in a bulk-surface reaction-diffusion model for signalling networks, Nonlinearity, 27 (2014), pp. 1805–1827.
50.
M. Ritoré, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom., 9 (2001), pp. 1093–1138.
51.
A. Ros, The isoperimetric problem, in Global Theory of Minimal Surfaces, Clay Math. Proc., D. A. Hoffman, ed., American Mathematical Society, Providence, RI, 2001, pp. 175–209.
52.
J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 3 (1992), pp. 249–264.
53.
K. Sakamoto, Spatial homogenization and internal layers in a reaction-diffusion system, Hiroshima Math. J., 30 (2000), pp. 377–402.
54.
V. Sharma and J. Morgan, Global existence of solutions to reaction-diffusion systems with mass transport type boundary conditions, SIAM J. Math. Anal., 48 (2016), pp. 4202–4240.
55.
X. Sun and M. J. Ward, Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension, Stud. Appl. Math., 105 (2000), pp. 203–234.
56.
T. H. Tan, J. Liu, P. W. Miller, M. Tekant, J. Dunkel, and N. Fakhri, Topological turbulence in the membrane of a living cell, Nat. Phys., 16 (2020), pp. 657–662.
57.
M. Tateno and S. Ishihara, Interfacial-curvature-driven coarsening in mass-conserved reaction-diffusion systems, Phys. Rev. Res., 3 (2021), 023198.
58.
P. K. Trong, E. M. Nicola, N. W. Goehring, K. V. Kumar, and S. W. Grill, Parameter-space topology of models for cell polarity, New J. Phys., 16 (2014), 065009.
59.
B. Vanderlei, J. J. Feng, and L. Edelstein-Keshet, A computational model of cell polarization and motility coupling mechanics and biochemistry, Multiscale Model. Simul., 9 (2011), pp. 1420–1443.
60.
L. Würthner, F. Brauns, G. Pawlik, J. Halatek, J. Kerssemakers, C. Dekker, and E. Frey, Bridging scales in a multiscale pattern-forming system, Proc. Natl. Acad. Sci. USA, 33 (2022), e2206888119.
61.
M. Zhu, J. Cornwall-Scoones, P. Wang, C. E. Handford, J. Na, M. Thomson, and M. Zernicka-Goetz, Developmental clock and mechanism of de novo polarization of the mouse embryo, Science, 370 (2020), eabd2703.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 2408 - 2431
ISSN (online): 1536-0040

History

Submitted: 28 September 2022
Accepted: 10 May 2023
Published online: 14 August 2023

Keywords

  1. pattern formation
  2. reaction-diffusion
  3. singular perturbations
  4. Laplace–Beltrami operator
  5. long-time behavior

MSC codes

  1. 35Q92
  2. 35K57
  3. 92C37

Authors

Affiliations

Pearson W. Miller
Center for Computational Biology, Flatiron Institute, New York, NY 10010 USA.
Center for Computational Mathematics, Flatiron Institute, New York, NY 10010 USA.
Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy.
Stanislav Y. Shvartsman
Center for Computational Biology, Flatiron Institute, New York, NY 10010 USA, Department of Molecular Biology, Princeton University, Princeton, NJ 08540 USA, and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540 USA.
Cyrill B. Muratov Contact the author
Corresponding author. Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy, and Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102 USA.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media