Abstract.

The present work is devoted to the eigenvalue asymptotic expansion of the Toeplitz matrix \(T_{n}(a)\), whose generating function \(a\) is complex-valued and has a power singularity at one point. As a consequence, \(T_{n}(a)\) is non-Hermitian and we know that in this setting, the eigenvalue computation is a nontrivial task for large sizes. First we follow the work of Bogoya, Böttcher, Grudsky, and Maximenko and deduce a complete asymptotic expansion for the eigenvalues. In a second step, we apply matrixless algorithms, in the spirit of the work by Ekström, Furci, Garoni, Serra-Capizzano et al., for computing those eigenvalues. Since the inner and extreme eigenvalues have different asymptotic behaviors, we worked on them independently and combined the results to produce a high precision global numerical and matrixless algorithm. The numerical results are very precise, and the computational cost of the proposed algorithms is independent of the size of the considered matrices for each eigenvalue, which implies a linear cost when the entire spectrum is computed. From the viewpoint of real-world applications, we emphasize that the class under consideration includes the matrices stemming from the numerical approximation of fractional diffusion equations. In the final section a concise discussion on the matter and a few open problems are presented.

Keywords

  1. asymptotic expansion
  2. eigenvalues
  3. Toeplitz matrix
  4. numerical algorithm
  5. matrixless

MSC codes

  1. 15B05
  2. 65F15
  3. 47B35
  4. 15A18
  5. 47A38

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

Part of the numerical computations were carried in the computer center by Jürgen Tischer of the Mathematics Department at Universidad del Valle, Cali-Colombia. Stefano Serra-Capizzano is grateful for the support of the Laboratory of Theory, Economics and Systems, Department of Computer Science at Athens University of Economics and Business.

References

1.
M. Bogoya, A. Böttcher, and S. M. Grudsky, Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices, Oper. Theory Adv. Appl., 220 (2012), pp. 77–95.
2.
M. Bogoya, A. Böttcher, S. M. Grudsky, and E. A. Maximenko, Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols, J. Math. Anal. Appl., 422 (2015), pp. 1308–1334.
3.
M. Bogoya, S.-E. Ekström, and S. Serra-Capizzano, Fast Toeplitz eigenvalue computations joining interpolation-extrapolation matrix-less algorithms and simple-loop theory, Numer. Algorithms, 91 (2022), pp. 1653–1676.
4.
M. Bogoya, S. M. Grudsky, and I. S. Malysheva, Extreme individual eigenvalues for a class of large Hessenberg Toeplitz matrices, Oper. Theory Adv. Appl., 271 (2018), pp. 119–143.
5.
M. Bogoya, S. M. Grudsky, M. Mazza, and S. Serra-Capizzano, On the extreme eigenvalues and asymptotic conditioning of a class of Toeplitz matrix-sequences arising from fractional problems, Linear Multilinear Algebra, 71 (2023), pp. 2462–2473.
6.
M. Bogoya, S. M. Grudsky, S. Serra-Capizzano, and C. Tablino-Possio, Fine spectral estimates with applications to the optimally fast solution of large FDE linear systems, BIT Numer. Math., 62 (2022), pp. 1417–1431.
7.
M. Bogoya and S. Serra-Capizzano, Eigenvalue Superposition Expansion for Toeplitz Matrix-Sequences, Generated by Linear Combinations of Matrix-Order Dependent Symbols, and Applications to Fast Eigenvalue Computations, arXiv:2112.11794, 2022.
8.
M. Bogoya, S. Serra-Capizzano, and P. Vassalos, Fast Toeplitz eigenvalue computations joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting, Appl. Math. Comput., 466 (2024), 128483.
9.
A. Böttcher and S. M. Grudsky, On the condition numbers of large semi-definite Toeplitz matrices, Linear Algebra Appl., 279 (1998), pp. 285–301.
10.
A. Böttcher and S. M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, 2005, https://doi.org/10.1137/1.9780898717853.
11.
A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Universitext, Springer-Verlag, New York, 1999.
12.
A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, 2nd ed., Springer Monogr. Math., Springer-Verlag, Berlin, 2006.
13.
H. Dai, Z. Geary, and L. P. Kadanoff, Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices, J. Stat. Mech. Theory Exp., 5 (2009), P05012.
14.
P. J. Davis, Interpolation and Approximation, Dover, New York, 1975.
15.
M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, Robust and optimal multi-iterative techniques for IgA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284 (2015), pp. 230–264.
16.
M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis, SIAM. J. Numer. Anal., 55 (2017), pp. 31–62, https://doi.org/10.1137/140988590.
17.
M. Donatelli, M. Mazza, and S. Serra-Capizzano, Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307 (2016), pp. 262–279.
18.
M. Donatelli, M. Mazza, and S. Serra-Capizzano, Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput., 40 (2018), pp. A4007–A4039, https://doi.org/10.1137/17M115164X.
19.
S.-E. Ekström, I. Furci, and S. Serra-Capizzano, Exact formulae and matrix-less eigensolvers for block banded Toeplitz-like matrices, BIT, 58 (2018), pp. 937–968.
20.
S.-E. Ekström and C. Garoni, A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices, Numer. Algorithms, 80 (2019), pp. 819–848.
21.
S.-E. Ekström, C. Garoni, and S. Serra-Capizzano, Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?, Exp. Math., 27 (2018), pp. 478–487.
22.
M. V. Fedoryuk, The Saddle-point Method, Nauka, Moscow, 1977 (in Russian).
23.
M. E. Fisher and R. E. Hartwig, Toeplitz determinants some applications, theorems, and conjectures, Adv. Chem. Phys., 15 (1968), pp. 333–353.
24.
C. Garoni and S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, Vol. I, Springer, Cham, 2017.
25.
C. Garoni and S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, Vol. II, Springer, Cham, 2018.
26.
U. Grenander and G. Szegő, Toeplitz Forms and their Applications, 2nd ed., California Monogr. Math. Sci., Chelsea Publishing, New York, 1984.
27.
L. P. Kadanoff, Expansions for eigenfunction and eigenvalues of large-\(n\) Toeplitz matrices, Papers Phys., 2 (2010), pp. 1–14.
28.
C. Li and W. Deng, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42 (2016), pp. 543–572.
29.
S. V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc., 99 (1961), pp. 153–192.
30.
S. V. Parter, On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc., 100 (1961), pp. 263–276.
31.
S. Serra-Capizzano, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra Appl., 270 (1998), pp. 109–129.
32.
S. Serra-Capizzano, The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems, Numer. Math., 81 (1999), pp. 461–495.
33.
S. Serra-Capizzano and P. Tilli, Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices, J. Comput. Appl. Math., 108 (1999), pp. 113–130.
34.
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Springer, 2010.
35.
P. Tilli, Universal bounds on the convergence rate of extreme Toeplitz eigenvalues, Linear Algebra Appl., 366 (2003), pp. 403–416.
36.
E. E. Tyrtyshnikov, Fast computation of Toeplitz forms and some multidimensional integrals, Russian J. Numer. Anal. Math. Model., 20 (2005), pp. 383–390.
37.
H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc., 88 (1958), pp. 491–522.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 284 - 305
ISSN (online): 1095-7162

History

Submitted: 20 October 2022
Accepted: 19 September 2023
Published online: 19 January 2024

Keywords

  1. asymptotic expansion
  2. eigenvalues
  3. Toeplitz matrix
  4. numerical algorithm
  5. matrixless

MSC codes

  1. 15B05
  2. 65F15
  3. 47B35
  4. 15A18
  5. 47A38

Authors

Affiliations

Departamento de Matemáticas, Universidad del Valle, Cali, Valle del Cauca, 76001, Colombia.
Departamento de Matemáticas, CINVESTAV, Mexico D.F., 07000, Mexico.
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como, 22100, Italy.

Funding Information

Ministry of Science and Higher Education of Russia: 075-02-2021-1386
Funding: The research of the second author was supported by CONACYT (Mexico) project “Ciencia de Frontera” FORDECYT-PRONACES/61517/2020 and by the Regional Mathematical Center of the Southern Federal University with the support of the Ministry of Science and Higher Education of Russia, agreement 075-02-2021-1386. The research of the third author was partly supported by the Italian INdAM-GNCS agency. Furthermore, the work of the third author was funded by the European High-Performance Computing Joint Undertaking (JU) under grant agreement 955701. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany, and Switzerland.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media