Abstract

How can we quantify uncertainty if our favorite computational tool---be it a numerical, statistical, or machine learning approach, or just any computer model---provides single-valued output only? In this article, we introduce the Easy Uncertainty Quantification (EasyUQ) technique, which transforms real-valued model output into calibrated statistical distributions, based solely on training data of model output--outcome pairs, without any need to access model input. In its basic form, EasyUQ is a special case of the recently introduced isotonic distributional regression (IDR) technique that leverages the pool-adjacent-violators algorithm for nonparametric isotonic regression. EasyUQ yields discrete predictive distributions that are calibrated and optimal in finite samples, subject to stochastic monotonicity. The workflow is fully automated, without any need for tuning. The Smooth EasyUQ approach supplements IDR with kernel smoothing, to yield continuous predictive distributions that preserve key properties of the basic form, including both stochastic monotonicity with respect to the original model output and asymptotic consistency. For the selection of kernel parameters, we introduce multiple one-fit grid search, a computationally much less demanding approximation to leave-one-out cross-validation. We use simulation examples and forecast data from weather prediction to illustrate the techniques. In a study of benchmark problems from machine learning, we show how EasyUQ and Smooth EasyUQ can be integrated into the workflow of neural network learning and hyperparameter tuning, and we find EasyUQ to be competitive with conformal prediction as well as more elaborate input-based approaches.

Keywords

  1. isotonic regression
  2. kernel smoothing
  3. computational model output
  4. neural network training
  5. pool-adjacent-violators (PAV) algorithm
  6. probabilistic forecast
  7. proper scoring rule

MSC codes

  1. 68T01
  2. 62G08
  3. 86A10

Formats available

You can view the full content in the following formats:

References

1.
M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya, V. Makarenkov, and S. Nahavandi, A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76 (2021), pp. 243--297.
2.
E. Baker, P. Barbillon, A. Fadikar, R. B. Gramacy, R. Herbei, D. Higdon, J. Huang, L. R. Johnson, P. Ma, A. Mondal, B. Pires, J. Sacks, and V. Sokolov, Analyzing stochastic computer models: A review with opportunities, Statist. Sci., 37 (2022), pp. 64--89.
3.
P. Bauer, A. Thorpe, and G. Brunet, The quiet revolution of numerical weather prediction, Nature, 525 (2015), pp. 47--55.
4.
Z. Ben Bouallègue, M. C. A. Clare, L. Magnusson, E. Gascón, M. Maier-Gerber, M. Janous̆ek, M. Rodwell, F. Pinault, J. S. Dramsch, S. T. K. Lang, B. Raoult, F. Rabier, M. Chevallier, I. Sandu, P. Dueben, M. Chantry, and F. Pappenberger, The Rise of Data-Driven Weather Forecasting: A First Statistical Assessment of Machine Learning-Based Weather Forecasts in an Operational-Like Context, preprint, https://arxiv.org/abs/2307.10128, 2023.
5.
J. O. Berger and L. A. Smith, On the statistical formalism of uncertainty quantification, Annu. Rev. Stat. Appl., 6 (2019), pp. 433--460.
6.
K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619 (2023), pp. 533--538.
7.
H. Boström, U. Johansson, and T. Löfström, Mondrian conformal predictive distributions, in Tenth Symposium on Conformal and Probabilistic Prediction and Applications, Proc. Mach. Learn. Res. 102, ML Research Press, 2021, pp. 3--15.
8.
A. Bowman, P. Hall, and T. Prvan, Bandwidth selection for the smoothing of distribution functions, Biometrika, 85 (1998), pp. 799--808.
9.
R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, 1973.
10.
J. Bröcker and L. A. Smith, From ensemble forecasts to predictive distribution functions, Tellus A, 60 (2008), pp. 663--678.
11.
E. Camporeale and A. Carè, ACCRUE: Accurate and reliable uncertainty estimate in deterministic models, Int. J. Uncertain. Quantif., 11 (2021), pp. 81--94.
12.
D. Ćevid, L. Michel, J. Näf, P. Bühlmann, and N. Meinshausen, Distributional random forests: Heterogeneity adjustment and multivariate distributional regression, J. Mach. Learn. Res., 23 (2022), pp. 14987--15065.
13.
K. Chen, T. Han, J. Gong, L. Bai, F. Ling, J.-J. Luo, X. Chen, L. Ma, T. Zhang, R. Su, Y. Ci, B. Li, X. Yang, and W. Ouyang, FengWu: Pushing the Skillful Global Medium-Range Weather Forecast beyond 10 Days Lead, preprint, https://arxiv.org/abs/2304.02948, 2023.
14.
Y. Chung, W. Neiswanger, I. Char, and J. Schneider, Beyond pinball loss: Quantile methods for calibrated uncertainty quantification, in 35th Conference on Neural Information Processing Systems (NeurIPS), Neural Information Processing Systems Foundation, 2021, pp. 1--14.
15.
E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig, Laplace redux---effortless Bayesian deep learning, in 35th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2021, pp. 1--15.
16.
A. D'Isanto and K. L. Polsterer, Photometric redshift estimation via deep learning: Generalized and pre-classification-less, image based, fully probabilistic redshifts, Astronomy & Astrophys., 609 (2018), art. A111.
17.
K. Doubleday, V. V. S. Hernandez, and B.-M. Hodge, Benchmark probabilistic solar forecasts: Characteristics and recommendations, Solar Energy, 206 (2020), pp. 52--67.
18.
T. Duan, A. Anand, D. Y. Ding, K. K. Thai, S. Basu, A. Ng, and A. Schuler, NGBoost: Natural gradient boosting for probabilistic prediction, in 37th International Conference on Machine Learning, Proc. Mach. Learn. Res. 119, ML Research Press, 2020, pp. 2690--2700.
19.
I. Ebert-Uphoff and K. Hilburn, The outlook for AI weather prediction, Nature, 619 (2023), pp. 473--474.
20.
H. El Barmi and H. Mukerjee, Inferences under a stochastic constraint: The $k$-sample case, J. Amer. Statist. Assoc., 100 (2005), pp. 252--261.
21.
C. Fernandez and M. F. J. Steel, Multivariate Student-$t$ regression models: Pitfalls and inference, Biometrika, 86 (2009), pp. 153--167.
22.
Y. Gal and Z. Ghahramani, Dropout as a Bayesian approximation: Representing model uncertainty in deep learning, in 33rd International Conference on Machine Learning, Proc. Mach. Learn. Res. 48, ML Research Press, 2016, pp. 1050--1059.
23.
Y. Gel, A. E. Raftery, and T. Gneiting, Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method, J. Amer. Statist. Assoc., 99 (2004), pp. 575--583.
24.
R. Ghanem, D. Higdon, and H. Owhadi, eds., Handbook of Uncertainty Quantification, Springer, 2017.
25.
T. Gneiting, F. Balabdaoui, and A. E. Raftery, Probabilistic forecasts, calibration and sharpness, J. R. Stat. Soc. Ser. B Stat. Methodol., 69 (2007), pp. 243--268.
26.
T. Gneiting and M. Katzfuss, Probabilistic forecasting, Annu. Rev. Stat. Appl., 1 (2014), pp. 125--151.
27.
T. Gneiting and A. E. Raftery, Weather forecasting with ensemble methods, Science, 310 (2005), pp. 248--249.
28.
T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction, and estimation, J. Amer. Stat. Assoc., 102 (2007), pp. 359--378.
29.
T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Rev., 133 (2005), pp. 1098--1118.
30.
T. Gneiting and P. Vogel, Receiver operating characteristic (ROC) curves: Equivalences, beta model, and minimum distance estimation, Mach. Learn., 111 (2022), pp. 2147--2159.
31.
A. Guntuboyina and B. Sen, Nonparametric shape-restricted regression, Statist. Sci., 33 (2018), pp. 563--594.
32.
A. Henzi, Consistent estimation of distribution functions under increasing concave and convex stochastic ordering, J. Business Econom. Statist., 41 (2023), pp. 1203--1214.
33.
A. Henzi, G.-R. Kleger, and J. F. Ziegel, Distributional (single) index models, J. Amer. Statist. Assoc., 118 (2023), pp. 489--503.
34.
A. Henzi, A. Mösching, and L. Dümbgen, Accelerating the pool-adjacent-violators algorithm for isotonic distributional regression, Methodol. Comput. Appl. Probab., 24 (2022), pp. 2633--2645.
35.
A. Henzi, J. F. Ziegel, and T. Gneiting, Isotonic distributional regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 83 (2021), pp. 963--993.
36.
J. M. Hernández-Lobato and R. P. Adams, Probabilistic backpropagation for scalable learning of Bayesian neural networks, in 32nd International Conference on Machine Learning, Proc. Mach. Learn. Res. 37, ML Research Press, 2015, pp. 1861--1869.
37.
A. Immer, M. Bauer, V. Fortuin, G. Rätsch, and M. E. Khan, Scalable marginal likelihood estimation for model selection in deep learning, in 38th International Conference on Machine Learning, 2021. Proc. Mach. Learn. Res. 139, ML Research Press, 2021, pp. 4563--4573.
38.
A. Jordan, F. Krüger, and S. Lerch, Evaluating probabilistic forecasts with scoringRules, J. Statist. Software, 90 (2019), pp. 1--37.
39.
M. Köhler, A. Schindler, and S. Sperlich, A review and comparison of bandwidth selection methods for kernel regression, Internat. Statist. Rev., 82 (2014), pp. 243--274.
40.
J. Kohonen and J. Suomela, Lessons learned in the challenge: Making predictions and scoring them, in Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, J. Quin͂onero-Candela, I. Dagan, B. Magnini, and F. d'Alché-Buc, eds., Springer, 2006, pp. 95--116.
41.
V. Kuleshov, N. Fenner, and S. Ermon, Accurate uncertainties for deep learning using calibrated regression, in 35th International Conference on Machine Learning, Proc. Mach. Learn. Res. 80, ML Research Press, 2018, pp. 2796--2804.
42.
B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, in 31st Conference on Neural Information Processing Systems (NIPS), Neural Information Processing Systems Foundation, 2017.
43.
R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, A. Pritzel, S. Ravuri, T. Ewalds, F. Alet, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, J. Stott, O. Vinyals, S. Mohamed, and P. Battaglia, GraphCast: Learning Skillful Medium-Range Global Weather Forecasting, preprint, https://arxiv.org/abs/2212.12794, 2022.
44.
M. Leutbecher and T. N. Palmer, Ensemble forecasting, J. Comput. Phys., 227 (2008), pp. 3515--3539.
45.
Q. Li, J. Lin, and J. S. Racine, Optimal bandwidth selection for nonparametric conditional distribution and quantile functions, J. Business Econom. Statist., 31 (2013), pp. 57--65.
46.
C. Marx, S. Zhou, W. Neiswanger, and S. Ermon, Modular conformal calibration, in 39th International Conference on Machine Learning, 2022. Proc. Mach. Learn. Res. 62, ML Research Press, 2022, pp. 15180--15195.
47.
J. E. Matheson and R. L. Winkler, Scoring rules for continuous probability distributions, Management Sci., 22 (1976), pp. 1087--1096.
48.
J. W. Messner, G. J. Mayr, D. S. Wilks, and A. Zeileis, Extending extended logistic regression: Extended versus separate versus ordered versus censored, Monthly Weather Rev., 142 (2014), pp. 3003--3014.
49.
F. Molteni, R. Buizza, T. N. Palmer, and T. Petroliagis, The ECMWF ensemble prediction system: Methodology and validation, Quart. J. Roy. Meteorol. Soc., 122 (1996), pp. 73--119.
50.
A. Mösching and L. Dümbgen, Monotone least squares and isotonic quantiles, Electron. J. Statist., 14 (2020), pp. 24--49.
51.
J. Nowotarski and R. Weron, Computing electricity spot price prediction intervals using quantile regression and forecast averaging, Comput. Statist., 30 (2015), pp. 791--803.
52.
T. N. Palmer, Predicting uncertainty in forecasts of weather and climate, Rep. Progr. Phys., 63 (2000), pp. 71--116.
53.
Python Language Reference, Python Software Foundation, 2023; available at https://python.org/.
54.
J. Quin͂onero-Candela, C. E. Rasmussen, F. Sinz, O. Bousquet, and B. Schölkopf, Evaluating predictive uncertainty challenge, in Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, J. Quin͂onero-Candela, I. Dagan, B. Magnini, and F. d'Alché-Buc, eds., Springer, 2006, pp. 1--27.
55.
A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Rev., 133 (2005), pp. 1155--1174.
56.
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2005.
57.
S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, WeatherBench: A benchmark dataset for data-driven weather forecasting, J. Adv. Model. Earth Syst., 12 (2020), art. e2020MS002203.
58.
S. Rasp and S. Lerch, Neural networks for postprocessing ensemble weather forecasts, Monthly Weather Rev., 146 (2017), pp. 3885--3900.
59.
H. Ritter, A. Botev, and D. Barber, A scalable Laplace approximation for neural networks, in International Conference on Learning Representations, ICLR, 2018, pp. 1--15.
60.
C. J. Roy and W. L. Oberkampf, A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 2131--2144.
61.
R. Schefzik, T. L. Thorarinsdottir, and T. Gneiting, Uncertainty quantification in complex simulation models using ensemble copula coupling, Statist. Sci., 28 (2013), pp. 616--640.
62.
M. Scheuerer, Probabilistic quantitative precipitation forecasting using ensemble model output statistics, Quart. J. Roy. Meteorol. Soc., 140 (2014), pp. 1086--1096.
63.
L. Schlosser, T. Hothorn, R. Stauffer, and A. Zeileis, Distributional regression forests for probabilistic precipitation forecasting in complex terrain, Ann. Appl. Statist., 13 (2019), pp. 1564--1589.
64.
M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari, and S. Stadtler, Can deep learning beat numerical weather prediction?, Philos. Trans. Roy. Soc. A, 379 (2021), art. 20200097.
65.
M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, 2007.
66.
B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall, 1986.
67.
J. M. Sloughter, A. E. Raftery, T. Gneiting, and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Rev., 135 (2007), pp. 3209--3220.
68.
R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014, https://doi.org/10.1137/1.9781611973228.
69.
D. M. Stasinopoulos and R. A. Rigby, Generalized additive models for location, scale and shape (GAMLSS) in \textsfR, J. Statist. Software, 23 (2007), pp. 1--46.
70.
T. J. Sullivan, Introduction to Uncertainty Quantification, Springer, 2015.
71.
N. Trefethen, Discrete or continuous?, SIAM News, 45 (2012), p. 1, https://people.maths.ox.ac.uk/trefethen/may12.pdf.
72.
V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, 2nd ed., Springer, 2022.
73.
V. Vovk, I. Nouretdinov, V. Manokhin, and A. Gammerman, Cross-conformal predictive distributions, in Conformal and Probabilistic Prediction and Applications, Proc. Mach. Learn. Res. 91, ML Research Press, 2018, pp. 37--51.
74.
V. Vovk, I. Petej, I. Nouretdinov, V. Manokhin, and A. Gammerman, Computationally efficient versions of conformal predictive distributions, Neurocomputing, 397 (2020), pp. 292--308.
75.
V. Vovk, I. Petej, P. Toccaceli, A. Gammerman, E. Ahlberg, and L. Carlsson, Conformal calibration, in Conformal and Probabilistic Prediction and Applications, Proc. Mach. Learn. Res. 128, ML Research Press, 2020, pp. 84--99.
76.
E.-M. Walz, Replication material for “Easy Uncertainty Quantification (EasyUQ): Generating predictive distributions from single-valued model output,'' 2023; available at https://github.com/evwalz/easyuq.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 91 - 122
ISSN (online): 1095-7200

History

Submitted: 20 December 2022
Accepted: 31 August 2023
Published online: 8 February 2024

Keywords

  1. isotonic regression
  2. kernel smoothing
  3. computational model output
  4. neural network training
  5. pool-adjacent-violators (PAV) algorithm
  6. probabilistic forecast
  7. proper scoring rule

MSC codes

  1. 68T01
  2. 62G08
  3. 86A10

Authors

Affiliations

Funding Information

Swiss National Science Foundation
Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : SFB/TRR 165
Klaus Tschira Stiftung https://doi.org/10.13039/501100007316

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media