Abstract.

In this work we propose, analyze, and test a new multiscale finite element method called Multiscale Hybrid (MH) method. The method is built as a close relative to the Multiscale Hybrid Mixed (MHM) method, but with the fundamental difference that a novel definition of the Lagrange multiplier is introduced. The practical implication of this is that both the local problems to compute the basis functions, as well as the global problem, are elliptic, as opposed to the MHM method (and also other previous methods) where a mixed global problem is solved and constrained local problems are solved to compute the local basis functions. The error analysis of the method is based on a hybrid formulation, and a static condensation process is done at the discrete level, so the final global system only involves the Lagrange multipliers. We tested the performance of the method by means of numerical experiments for problems with multiscale coefficients, and we carried out comparisons with the MHM method in terms of performance, accuracy, and memory requirements.

Keywords

  1. multiscale finite element
  2. hybrid problem
  3. multiscale diffusion equation

MSC codes

  1. 65N30
  2. 65M12
  3. 65Y20

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer (http://sdumont.lncc.br), which have contributed to the research results reported within this paper.

References

1.
R. Altmann, P. Henning, and D. Peterseim, Numerical homogenization beyond scale separation, Acta Numer., 30 (2021), pp. 1–86, https://doi.org/10.1017/S0962492921000015.
2.
P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41, https://doi.org/10.1137/S0895479899358194.
3.
R. Araya, C. Harder, D. Paredes, and F. Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal., 51 (2013), pp. 3505–3531, https://doi.org/10.1137/120888223.
4.
T. Arbogast and K. J. Boyd, Subgrid upscaling and mixed multiscale finite elements, SIAM J. Numer. Anal., 44 (2006), pp. 1150–1171, https://doi.org/10.1137/050631811.
5.
T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), pp. 319–346, https://doi.org/10.1137/060662587.
6.
I. Babuška and J. E. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20 (1983), pp. 510–536, https://doi.org/10.1137/0720034.
7.
R. E. Bank, A. H. Sherman, and A. Weiser, Some refinement algorithms and data structures for regular local mesh refinement, in Scientific Computing: Applications of Mathematics and Computing to the Physical Sciences, IMACS Trans. Sci. Comput. 1, IMACS New Brunswick, NJ; North-Holland, Amsterdam, 1983, pp. 3–17.
8.
G. R. Barrenechea, F. Jaillet, D. Paredes, and F. Valentin, The multiscale hybrid mixed method in general polygonal meshes, Numer. Math., 145 (2020), pp. 197–237, https://doi.org/10.1007/s00211-020-01103-5.
9.
S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions, SIAM J. Numer. Anal., 41 (2003), pp. 306–324, https://doi.org/10.1137/S0036142902401311.
10.
T. Chaumont-Frelet, A. Ern, S. Lemaire, and F. Valentin, Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods, ESAIM Math. Model. Numer. Anal., 56 (2022), pp. 261–285, https://doi.org/10.1051/m2an/2021082.
11.
T. Chaumont-Frelet, D. Paredes, and F. Valentin, Flux Approximation on Unfitted Meshes and Application to Multiscale Hybrid-Mixed Methods, preprint, 2022, https://hal.inria.fr/hal-03834748.
12.
T. Chaumont-Frelet and F. Valentin, A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains, SIAM J. Numer. Anal., 58 (2020), pp. 1029–1067, https://doi.org/10.1137/19M1255616.
13.
M. Cicuttin, A. Ern, and S. Lemaire, A hybrid high-order method for highly oscillatory elliptic problems, Comput. Methods Appl. Math., 19 (2019), pp. 723–748, https://doi.org/10.1515/cmam-2018-0013.
14.
W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), pp. 87–132.
15.
Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods: Theory and Applications, Surv. Tutor. Appl. Math. Sci. 4, Springer, New York, 2009.
16.
Y. R. Efendiev, T. Y. Hou, and X.-H. Wu, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37 (2000), pp. 888–910, https://doi.org/10.1137/S0036142997330329.
17.
A. Ern and J.-L. Guermond, Finite Elements I—Approximation and Interpolation, Texts Appl. Math. 72, Springer, Cham, 2021.
18.
A. Ern and J.-L. Guermond, Finite Elements II—Galerkin Approximation, Elliptic and Mixed PDEs, Texts Appl. Math. 73, Springer, Cham, 2021.
19.
M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699–731, https://doi.org/10.1137/S0036142903425409.
20.
A. T. A. Gomes, W. S. Pereira, and F. Valentin, The MHM method for linear elasticity on polytopal meshes, IMA J. Numer. Anal., 43 (2023), pp. 2265–2298, https://doi.org/10.1093/imanum/drac041.
21.
G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, http://eigen.tuxfamily.org.
22.
R. T. Guiraldello, R. F. Ausas, F. S. Sousa, F. Pereira, and G. C. Buscaglia, The multiscale Robin coupled method for flows in porous media, J. Comput. Phys., 355 (2018), pp. 1–21, https://doi.org/10.1016/j.jcp.2017.11.002.
23.
R. T. Guiraldello, R. F. Ausas, F. S. Sousa, F. Pereira, and G. C. Buscaglia, Interface spaces for the multiscale Robin coupled method in reservoir simulation, Math. Comput. Simulation, 164 (2019), pp. 103–119, https://doi.org/10.1016/j.matcom.2018.09.027.
24.
C. Harder, A. L. Madureira, and F. Valentin, A hybrid-mixed method for elasticity, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 311–336, https://doi.org/10.1051/m2an/2015046.
25.
C. Harder, D. Paredes, and F. Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, J. Comput. Phys., 245 (2013), pp. 107–130, https://doi.org/10.1016/j.jcp.2013.03.019.
26.
C. Harder, D. Paredes, and F. Valentin, On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogeneous coefficients, Multiscale Model. Simul., 13 (2015), pp. 491–518, https://doi.org/10.1137/130938499.
27.
T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. B. Quincy, The variational multiscale method—A paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 3–24.
28.
P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), SIAM, Philadelphia, 1990, pp. 202–223.
29.
A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83 (2014), pp. 2583–2603, https://doi.org/10.1090/S0025-5718-2014-02868-8.
30.
A. Målqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition, SIAM Spotlights 5, SIAM, Philadelphia, 2021, https://doi.org/10.1137/1.9781611976458.
31.
A. L. Madureira, Numerical Methods and Analysis of Multiscale Problems, SpringerBriefs Math., Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-50866-5.
32.
A. L. Madureira and M. Sarkis, Hybrid localized spectral decomposition for multiscale problems, SIAM J. Numer. Anal., 59 (2021), pp. 829–863, https://doi.org/10.1137/20M1314896.
33.
Society of Petroleum Engineers, SPE Comparative Solution Project, 2000, https://www.spe.org/web/csp/datasets/set02.htm#download (accessed 2000-05-16).
34.
P. Oumaziz, P. Gosselet, K. Saavedra, and N. Tardieu, Analysis, improvement and limits of the multiscale Latin method, Comput. Methods Appl. Mech. Engrg., 384 (2021), 113955, https://doi.org/10.1016/j.cma.2021.113955.
35.
D. Paredes, F. Valentin, and H. M. Versieux, Revisiting the robustness of the multiscale hybrid-mixed method: The face-based strategy, J. Comput. Appl. Math., 436 (2024), 115415, https://doi.org/10.1016/j.cam.2023.115415.
36.
P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math. 606, Springer-Verlag, Berlin, New York, 1977, pp. 292–315.
37.
P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp., 31 (1977), pp. 391–413, https://doi.org/10.2307/2006423.
38.
F. F. Rocha, F. S. Sousa, R. F. Ausas, G. C. Buscaglia, and F. Pereira, Multiscale mixed methods for two-phase flows in high-contrast porous media, J. Comput. Phys., 409 (2020), 109316, https://doi.org/10.1016/j.jcp.2020.109316.
39.
J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories, Numer. Math., 94 (2003), pp. 195–202, https://doi.org/10.1007/s002110100308.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1628 - A1657
ISSN (online): 1095-7197

History

Submitted: 21 December 2022
Accepted: 24 January 2024
Published online: 13 May 2024

Keywords

  1. multiscale finite element
  2. hybrid problem
  3. multiscale diffusion equation

MSC codes

  1. 65N30
  2. 65M12
  3. 65Y20

Authors

Affiliations

Gabriel R. Barrenechea
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK.
Antonio Tadeu A. Gomes
Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing (LNCC), Av. Getulio Vargas 333, Petropolis RJ, Brazil.
Departamento de Ingeniería Matemática and CI²MA, Universidad de Concepción, Concepción 4089100, Chile.

Funding Information

EOLIS: MATH-AMSUD 21-MATH-04
ANID-Chile: FONDECYT-1181572
Leverhulme Trust: RPG-2021-238
Funding: The work of the first author was partially supported by the Leverhulme Trust through the Research Project grant RPG-2021-238. The work of the third author was partially supported by Project EOLIS (MATH-AMSUD 21-MATH-04) and by ANID-Chile through grant FONDECYT-1181572.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media