Abstract.

We introduce an efficient numerical method for second-order linear ODEs whose solution may vary between highly oscillatory and slowly changing over the solution interval. In oscillatory regions the solution is generated via a nonoscillatory phase function that obeys the nonlinear Riccati equation. We propose a defect correction iteration that gives an asymptotic series for such a phase function; this is numerically approximated on a Chebyshev grid with a small number of nodes. For analytic coefficients we prove that each iteration, up to a certain maximum number, reduces the residual by a factor of order of the local frequency. The algorithm adapts both the stepsize and the choice of method, switching to a conventional spectral collocation method away from oscillatory regions. In numerical experiments we find that our proposal outperforms other state-of-the-art oscillatory solvers, most significantly at low to intermediate frequencies and at low tolerances, where it may use up to \(10^6\) times fewer function evaluations. Even in high-frequency regimes, our implementation is on average 10 times faster than other specialized solvers.

Keywords

  1. oscillatory ODEs
  2. asymptotic expansion
  3. collocation method
  4. adaptivity

MSC codes

  1. 65LXX
  2. 65L60
  3. 34E05
  4. 34-04

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

We have benefited greatly from discussions with Jim Bremer, Charlie Epstein, Manas Rachh, and Leslie Greengard. The input of the anonymous referees also led to several improvements. The Flatiron Institute is a division of the Simons Foundation.

References

1.
R. Adhikari, R. Dutt, A. Khare, and U. Sukhatme, Higher-order WKB approximations in supersymmetric quantum mechanics, Phys. Rev. A, 38 (1988), pp. 1679–1686.
2.
F. J. Agocs, (py)oscode: Fast solutions of oscillatory ODEs, J. Open Source Software, 5 (2020), 2830, https://doi.org/10.21105/joss.02830.
3.
F. J. Agocs and A. H. Barnett, riccati: An adaptive, spectral solver for oscillatory ODEs, J. Open Source Software, 8 (2023), 5430, https://doi.org/10.21105/joss.05430.
4.
F. J. Agocs, W. J. Handley, A. N. Lasenby, and M. P. Hobson, Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems, Phys. Rev. Res., 2 (2020), 013030.
5.
F. J. Agocs, M. P. Hobson, W. J. Handley, and A. N. Lasenby, Dense Output for Highly Oscillatory Numerical Solutions, preprint, arXiv:2007.05013, 2020.
6.
A. Arnold, N. B. Abdallah, and C. Negulescu, WKB-based schemes for the oscillatory 1D Schrödinger equation in the semiclassical limit, SIAM J. Numer. Anal., 49 (2011), pp. 1436–1460.
7.
R. Bellman, Methods of Nonlinear Analysis, Elsevier, Amsterdam, 1970.
8.
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, Vol. 1, Springer Science & Business Media, New York, 1999.
9.
M. V. Berry, Asymptotics, superasymptotics, hyperasymptotics \(\ldots\), in Asymptotics Beyond All Orders, H. Segur, S. Tanveer, and H. Levine, eds., Plenum, New York, 1991, pp. 1–14.
10.
K. Böhmer and H. J. Stetter, Defect Correction Methods, Computing Supplementa 5, Springer, New York, 1984.
11.
J. P. Boyd, The devil’s invention: Asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math., 56 (1999), pp. 1–98.
12.
J. Bremer, On the numerical solution of second order ordinary differential equations in the high-frequency regime, Appl. Comput. Harmon. Anal., 44 (2018), pp. 312–349.
13.
J. Bremer, Phase Function Methods for Second Order Linear Ordinary Differential Equations with Turning Points, preprint, arXiv:2209.14561, 2022.
14.
J. Bremer and V. Rokhlin, Improved estimates for nonoscillatory phase functions, Discrete Contin. Dyn. Syst., 36 (2016), pp. 4101–4131, https://doi.org/10.3934/dcds.2016.36.4101.
15.
P. Cea, P. Colangelo, G. Nardulli, G. Paiano, and G. Preparata, WKB approach to the Schrödinger equation with relativistic kinematics, Phys. Rev. D, 26 (1982), 1157.
16.
E. D. Courant and H. S. Snyder, Theory of the alternating-gradient synchrotron, Ann. Phys., 3 (1958), pp. 1–48.
17.
R. C. Davidson and Q. Hong, Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific, River Edge, NJ, 2001.
18.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds., NIST Digital Library of Mathematical Functions, Release 1.1.7, http://dlmf.nist.gov/9, 2022.
20.
T. A. Driscoll, F. Bornemann, and L. N. Trefethen, The chebop system for automatic solution of differential equations, BIT, 48 (2008), pp. 701–723.
21.
T. A. Driscoll and R. J. Braun, Fundamentals of Numerical Computation, SIAM, Philadelphia, 2017.
22.
T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, 2014, http://www.chebfun.org/docs/guide/.
23.
F. Einaudi and C. Hines, WKB approximation in application to acoustic–gravity waves, Canad. J. Phys., 48 (1970), pp. 1458–1471.
24.
B. Engquist, A. Fokas, E. Hairer, and A. Iserles, Highly Oscillatory Problems, London Math. Soc. Lecture Note Ser. 366, Cambridge University Press, Cambridge, UK, 2009.
25.
P. Filippi, A. Bergassoli, D. Habault, and J. P. Lefebvre, Acoustics: Basic Physics, Theory, and Methods, Elsevier, Amsterdam, 1998.
26.
G. Fiore, The Time-Dependent Harmonic Oscillator Revisited, preprint, arXiv:2205.01781, 2022.
27.
D. Fortunato, N. Hale, and A. Townsend, The ultraspherical spectral element method, J. Comput. Phys., 436 (2021), 110087.
28.
W. M. Gentleman, Implementing Clenshaw-Curtis quadrature, I. Methodology and experience, Commun. ACM, 15 (1972), pp. 337–342.
29.
W. M. Gentleman, Implementing Clenshaw-Curtis quadrature, II. Computing the cosine transformation, Commun. ACM, 15 (1972), pp. 343–346.
30.
I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products, 8th ed., Academic, New York, 2015.
31.
A. Greenbaum and T. P. Chartier, Numerical Methods, Princeton University Press, Princeton, NJ, 2012.
32.
D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, Cambrdige, UK, 2018.
33.
E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential Equations I, Springer, Berlin, 1993, https://doi.org/10.1007/978-3-540-78862-1.
34.
N. Hale and L. N. Trefethen, Chebfun and numerical quadrature, Sci. China Math., 55 (2012), pp. 1749–1760.
35.
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, Array programming with NumPy, Nature, 585 (2020), pp. 357–362, https://doi.org/10.1038/s41586-020-2649-2.
36.
R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Courier Corporation, 2003.
37.
Z. Heitman, J. Bremer, and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime, J. Comput. Phys., 290 (2015), pp. 1–27.
38.
J. Helsing and R. Ojala, On the evaluation of layer potentials close to their sources, J. Comput. Phys., 227 (2008), pp. 2899–2921.
39.
L. T. Hergt, F. J. Agocs, W. J. Handley, M. P. Hobson, and A. N. Lasenby, Finite inflation in curved space, Phys. Rev. D, 106 (2022), 063529, https://doi.org/10.1103/physrevd.106.063529.
40.
J. Körner, A. Arnold, and K. Döpfner, WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime, J. Comput. Appl. Math., 404 (2022), 113905.
41.
R. Krivec, Unified QLM for regular and arbitrary singular potentials, Appl. Math. Comput., 246 (2014), pp. 440–446.
42.
R. Krivec and V. Mandelzweig, Quasilinearization method and WKB, Comput. Phys. Commun., 174 (2006), pp. 119–126.
43.
R. Krivec and V. Mandelzweig, Quasilinearization approach to computations with singular potentials, Comput. Phys. Commun., 179 (2008), pp. 865–867.
44.
H. R. Lewis, Jr., Motion of a time-dependent harmonic oscillator, and of a charged particle in a class of time-dependent, axially symmetric electromagnetic fields, Phys. Rev., 172 (1968), pp. 1313–1315.
45.
K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Routledge, New York, 2022.
46.
D. Logan, Applied Mathematics, 4th ed., Wiley, New York, 2013.
47.
V. Mandelzweig, Quasilinear Approach to Summation of the WKB Series, preprint, quant-ph/0409137, 2004.
48.
J. Martin and D. J. Schwarz, WKB approximation for inflationary cosmological perturbations, Phys. Rev. D, 67 (2003), 083512.
49.
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, UK, 2010, http://dlmf.nist.gov.
50.
S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55 (2013), pp. 462–489.
51.
L. R. Petzold, L. O. Jay, and J. Yen, Numerical solution of highly oscillatory ordinary differential equations, Acta Numer., 6 (1997), pp. 437–483.
52.
G. Pritula, E. Petrenko, and O. Usatenko, Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems, Phys. Lett. A, 382 (2018), pp. 548–553, https://doi.org/10.1016/j.physleta.2017.12.007.
53.
G. Saxena and B. Ghosal, Rubidium Atomic Clock: The Workhorse of Satellite Navigation, World Scientific, River Edge, NJ, 2020, https://books.google.com/books?id=EGPcDwAAQBAJ.
54.
K. Serkh and J. Bremer, Phase Function Methods for Second Order Inhomogeneous Linear Ordinary Differential Equations, https://arxiv.org/abs/2211.13744, 2022.
55.
E. M. Stein and R. Shakarchi, Complex Analysis, Princeton Lectures in Analysis 2, Princeton University Press, Princeton, NJ, 2003.
56.
L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000.
57.
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013, http://www.chebfun.org/ATAP.
58.
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van Mulbregt, SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods, 17 (2020), pp. 261–272, https://doi.org/10.1038/s41592-019-0686-2.
59.
S. Winitzki, Cosmological particle production and the precision of the WKB approximation, Phys. Rev. D, 72 (2005), 104011.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 295 - 321
ISSN (online): 1095-7170

History

Submitted: 20 January 2023
Accepted: 26 September 2023
Published online: 29 January 2024

Keywords

  1. oscillatory ODEs
  2. asymptotic expansion
  3. collocation method
  4. adaptivity

MSC codes

  1. 65LXX
  2. 65L60
  3. 34E05
  4. 34-04

Authors

Affiliations

Fruzsina J. Agocs Contact the author
Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY 10010 USA.
Alex H. Barnett
Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY 10010 USA.

Funding Information

Funding: The work of the authors was supported by the Flatiron Institute, a division of the Simons Foundation.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media