Abstract.

We study the computational efficiency of approaches, based on Hilbert’s Nullstellensatz, which use systems of linear equations for detecting noncolorability of graphs having large girth and chromatic number. We show that for every non-\(k\)-colorable graph with \(n\) vertices and girth \(g\gt 4k\), the algorithm is required to solve systems of size at least \(n^{\Omega (g)}\) in order to detect its non-\(k\)-colorability.

Keywords

  1. graphs coloring
  2. graphs with large girth
  3. Hilbert’s Nullstellensatz

MSC codes

  1. 05E14
  2. 05C15
  3. 03F20

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

The authors thank Jesús A. De Loera for valuable comments, insights, and feedback during this research, in particular, for bringing [24] to our attention. We would like also to thank the anonymous reviewers for their comments and suggestions. Finally, the authors thank Bertrand Guenin and Jochen Koenemann for their valuable comments on a preliminary version of the results.

References

1.
M. V. Alekhnovich and A. A. Razborov, Lower bounds for polynomial calculus: The nonbinomial ideal case, Tr. Mat. Inst. Steklova, 242 (2003), pp. 23–43.
2.
N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput., 8 (1999), pp. 7–29.
3.
N. Alon, A. Kostochka, B. Reiniger, D. B. West, and X. Zhu, Coloring, sparseness and girth, Israel J. Math., 214 (2016), pp. 315–331, https://doi.org/10.1007/s11856-016-1361-2.
4.
A. Atserias and J. Ochremiak, Proof complexity meets algebra, ACM Trans. Comput. Log., 20 (2019), 1.
5.
Y. H. Au and L. Tunçel, A comprehensive analysis of polyhedral lift-and-project methods, SIAM J. Discrete Math., 30 (2016), pp. 411–451, https://doi.org/10.1137/130950173.
6.
D. A. Bayer, The Division Algorithm and the Hilbert Scheme, Harvard University, Cambridge, MA, 1982, https://dl.acm.org/doi/10.5555/910526.
7.
P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, The relative complexity of NP search problems, J. Comput. System Sci., 57 (1998), pp. 3–19, https://doi.org/10.1006/jcss.1998.1575.
8.
P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, The relative complexity of np search problems, J. Comput. Syst. Sci., 57 (1998), pp. 3–19.
9.
P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, and P. Pudlák, Lower bounds on Hilbert’s Nullstellensatz and propositional proofs, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM 1994), IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 794–806, https://doi.org/10.1109/SFCS.1994.365714.
10.
S. R. Buss and T. Pitassi, Good degree bounds on Nullstellensatz refutations of the induction principle, J. Comput. System Sci., 57 (1998), pp. 162–171, https://doi.org/10.1006/jcss.1998.1585.
11.
E. Chlamtac and M. Tulsiani, Convex relaxations and integrality gaps, Springer, New York, 2012, pp. 139–169, https://doi.org/10.1007/978-1-4614-0769-0_6.
12.
M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), ACM, New York, 1996, pp. 174–183.
13.
D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, in Undergraduate Texts in Mathematics, 3rd ed., Springer, New York, 2007, https://doi.org/10.1007/978-0-387-35651-8.
14.
D. A. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Grad. Texts in Math. 185, 2nd ed., Springer, New York, 2005.
15.
J. A. De Loera, C. J. Hillar, P. N. Malkin, and M. Omar, Recognizing graph theoretic properties with polynomial ideals, Electron. J. Combin., 17 (2010), R114, http://www.combinatorics.org/Volume_17/Abstracts/v17i1r114.html.
16.
J. A. De Loera, J. Lee, P. N. Malkin, and S. Margulies, Hilbert’s Nullstellensatz and an algorithm for proving combinatorial infeasibility, in ISSAC ’08: Proceedings of the Twenty-First International Symposium on Symbolic and Algebraic Computation, New York, 2008, pp. 197–206, https://doi.org/10.1145/1390768.1390797.
17.
J. A. De Loera, J. Lee, S. Margulies, and J. Miller, Weak orientability of matroids and polynomial equations, European J. Combin., 50 (2015), pp. 56–71.
18.
J. A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, and J. Swenson, Grobner Bases and Nullstellensatze for Graph-Coloring Ideals, e-prints, https://arxiv.org/abs/1410.6806, 2014.
19.
P. Erdős, Graph theory and probability, Canad. J. Math., 11 (1959), pp. 34–38.
20.
G. Exoo and J. Goedgebeur, Bounds for the Smallest \(k\)-chromatic Graphs of Given Girth, preprint, https://arxiv.org/abs/arXiv:1805.06713, 2018.
21.
D. R. Grayson and M. E. Stillman, Macaulay2, a Software System for Research in Algebraic Geometry, available at https://macaulay2.com.
22.
D. Hilbert, Ueber die vollen Invariantensysteme, Math. Ann., 42 (1893), pp. 313–373, https://doi.org/10.1007/BF01444162.
23.
J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc., 1 (1988), pp. 963–975, https://doi.org/10.2307/1990996.
24.
M. Lauria and J. Nordström, Graph colouring is hard for algorithms based on Hilbert’s Nullstellensatz and Gröbner bases, in Proceedings of the 32nd Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform. 79, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, 2.
25.
D. Lazard, Algèbre linéaire sur \(K[X_{1},\cdots,X_{n}]\), et élimination, Bull. Soc. Math. France, 105 (1977), pp. 165–190.
26.
B. Li, B. Lowenstein, and M. Omar, Low Degree Nullstellensatz Certificates for 3-Colorability, e-prints, https://arxiv.org/abs/1503.04680, 2015.
27.
L. Lovász, On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar., 19 (1968), pp. 59–67.
28.
A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988), pp. 261–277, https://doi.org/10.1007/BF02126799.
29.
S. Margulies, Computer Algebra, Combinatorics, and Complexity: Hilbert’s Nullstellensatz and Np-Complete Problems, ProQuest, 2008, 3336295.
30.
S. Marshall, Another simple proof of the high girth, high chromatic number theorem, Amer. Math. Monthly, 115 (2008), pp. 68–70, https://doi.org/10.1080/00029890.2008.11920498.
31.
M. Mikša and J. Nordström, A generalized method for proving polynomial calculus degree lower bounds, in Proceedings of the 30th Conference on Computational Complexity, LIPIcs. Leibniz Int. Proc. Inform. 33, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015, pp. 467–487.
32.
K. Mizuno and S. Nishihara, Constructive generation of very hard 3-colorability instances, Discrete Appl. Math., 156 (2008), pp. 218–229, https://doi.org/10.1016/j.dam.2006.07.015.
33.
A. A. Razborov, Lower bounds for the polynomial calculus, Comput. Complexity, 7 (1998), pp. 291–324, https://doi.org/10.1007/s000370050013.
34.
R. Barbosa and J. Ariel, Convex Algebraic Geometry Approaches to Graph Coloring and Stable Set Problems, 2021, http://hdl.handle.net/10012/17229.
35.
T. Tao, Hilbert’s Nullstellensatz, 2007, https://terrytao.wordpress.com/2007/11/26/hilberts-nullstellensatz/ (accessed 2016-02-11).

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2108 - 2131
ISSN (online): 1095-7146

History

Submitted: 14 February 2023
Accepted: 28 March 2024
Published online: 11 July 2024

Keywords

  1. graphs coloring
  2. graphs with large girth
  3. Hilbert’s Nullstellensatz

MSC codes

  1. 05E14
  2. 05C15
  3. 03F20

Authors

Affiliations

Julian Romero Contact the author
Amazon.com, Inc., Vancouver, BC V6B 1X4, Canada.
Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Funding Information

Tutte Scholarship
Office of Naval Research (ONR): N00014-15-1-2171, N00014-18-1-2078
Funding: This work was funded in part by NSERC Discovery Grants, Tutte Scholarship, U.S. Office of Naval Research under award numbers: N00014-15-1-2171 and N00014-18-1-2078. This financial support is gratefully acknowledged.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media