Abstract

We present a unifying Perron--Frobenius theory for nonlinear spectral problems defined in terms of nonnegative tensors. By using the concept of tensor shape partition, our results include, as a special case, a wide variety of particular tensor spectral problems considered in the literature and can be applied to a broad set of problems involving tensors (and matrices), including the computation of operator norms, graph and hypergraph matching in computer vision, hypergraph spectral theory, higher-order network analysis, and multimarginal optimal transport. The key to our approach is to recast the eigenvalue problem as a fixed point problem on a suitable product of projective spaces. This allows us to use the theory of multihomogeneous order-preserving maps to derive new and unifying Perron--Frobenius theorems for nonnegative tensors, which either imply earlier results of this kind or improve them, as weaker assumptions are required. We introduce a general power method for the computation of the dominant tensor eigenpair and provide a detailed convergence analysis. This paper is directly based on our previous work [A. Gautier, F. Tudisco, and M. Hein, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1206--1231] and complements it by providing an extended introduction and several new results.

Keywords

  1. Perron--Frobenius theorem
  2. Birkhoff--Hopf theorem
  3. nonnegative tensor
  4. tensor power method
  5. tensor eigenvalue
  6. tensor singular value
  7. tensor norm

MSC codes

  1. 47H07
  2. 47J10
  3. 15B48
  4. 47H09
  5. 47H10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Agrachev, K. Kozhasov, and A. Uschmajew, Chebyshev polynomials and best rank-one approximation ratio, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 308--331, https://doi.org/10.1137/19M1269713.
2.
F. Arrigo, D. J. Higham, and F. Tudisco, A framework for second-order eigenvector centralities and clustering coefficients, Proc. A, 476 (2020), art. 20190724.
3.
F. Arrigo and F. Tudisco, Multi-dimensional, multilayer, nonlinear and dynamic HITS, in Proceedings of the 2019 SIAM International Conference on Data Mining, SIAM, 2019, pp. 369--377, https://doi.org/10.1137/1.9781611975673.42.
4.
S. Banach, Über homogene Polynome in $({L}^2)$, Studia Math., 7 (1938), pp. 36--44.
5.
J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37 (2015), pp. A1111--A1138, https://doi.org/10.1137/141000439.
6.
A. R. Benson, Three hypergraph eigenvector centralities, SIAM J. Math. Data Sci., 1 (2019), pp. 293--312, https://doi.org/10.1137/18M1203031.
7.
A. R. Benson, D. F. Gleich, and J. Leskovec, Tensor spectral clustering for partitioning higher-order network structures, in Proceedings of the 2015 SIAM International Conference on Data Mining, SIAM, 2015, pp. 118--126, https://doi.org/10.1137/1.9781611974010.14.
8.
A. R. Benson, D. F. Gleich, and L.-H. Lim, The spacey random walk: A stochastic process for higher-order data, SIAM Rev., 59 (2017), pp. 321--345, https://doi.org/10.1137/16M1074023.
9.
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994, https://doi.org/10.1137/1.9781611971262.
10.
D. W. Boyd, The power method for $\ell^p$ norms, Linear Algebra Appl., 9 (1974), pp. 95--101.
11.
K. C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), pp. 507--520.
12.
K. C. Chang, L. Qi, and T. Zhang, A survey on the spectral theory of nonnegative tensors, Numer. Linear Algebra Appl., 20 (2013), pp. 891--912.
13.
K. C. Chang, L. Qi, and G. Zhou, Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), pp. 284--294.
14.
P. S. Chodrow, N. Veldt, and A. R. Benson, Generative hypergraph clustering: From blockmodels to modularity, Sci. Adv., 7 (2021), art. eabh1303.
15.
M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in Advances in Neural Information Processing Systems, Vol. 26, Curran Associates, 2013.
16.
L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-$1$ and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324--1342, https://doi.org/10.1137/S0895479898346995.
17.
O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, A tensor-based algorithm for high-order graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), pp. 2383--2395.
18.
D. Fasino and F. Tudisco, Ergodicity coefficients for higher-order stochastic processes, SIAM J. Math. Data Sci., 2 (2020), pp. 740--769, https://doi.org/10.1137/19M1285214.
19.
H. Frazer, Note on Hilbert's inequality, J. London Math. Soc., 1 (1946), pp. 7--9.
20.
S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric, Front. Math. China, 8 (2013), pp. 19--40.
21.
S. Friedland and S. Gaubert, Spectral inequalities for nonnegative tensors and their tropical analogues, Vietnam J. Math., 48 (2020), pp. 893--928.
22.
S. Friedland, S. Gaubert, and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), pp. 738--749.
23.
A. Gautier, Perron-Frobenius Theorem for Multi-homogeneous Mappings with Applications to Nonnegative Tensors, dissertation, Saarland University, 2019.
24.
A. Gautier and M. Hein, Tensor norm and maximal singular vectors of nonnegative tensors---A Perron-Frobenius theorem, a Collatz-Wielandt characterization and a generalized power method, Linear Algebra Appl., 505 (2016), pp. 313--343.
25.
A. Gautier, M. Hein, and F. Tudisco, The global convergence of the nonlinear power method for mixed-subordinate matrix norms, J. Sci. Comput., 88 (2021), pp. 1--28.
26.
A. Gautier and F. Tudisco, The contractivity of cone-preserving multilinear mappings, Nonlinearity, 32 (2019), pp. 4713--4728.
27.
A. Gautier, F. Tudisco, and M. Hein, The Perron--Frobenius theorem for multihomogeneous mappings, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1179--1205, https://doi.org/10.1137/18M1165037.
28.
A. Gautier, F. Tudisco, and M. Hein, A unifying Perron--Frobenius theorem for nonnegative tensors via multihomogeneous maps, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1206--1231, https://doi.org/10.1137/18M1165049.
29.
D. F. Gleich, L.-H. Lim, and Y. Yu, Multilinear PageRank, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1507--1541, https://doi.org/10.1137/140985160.
30.
S. He, Z. Li, and S. Zhang, Approximation algorithms for homogeneous polynomial optimization with quadratic constraints, Math. Program., 125 (2010), pp. 353--383.
31.
J. M. Hendrickx and A. Olshevsky, Matrix $p$-norms are NP-hard to approximate if $p\neq1,2,\infty$, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2802--2812, https://doi.org/10.1137/09076773X.
32.
C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), pp. 1--38.
33.
S. Hu, Z. Huang, and L. Qi, Strictly nonnegative tensors and nonnegative tensor partition, Sci. China Math., 57 (2014), pp. 181--195.
34.
W. Li and M. K. Ng, On the limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014), pp. 362--385.
35.
Z. Li, Y. Nakatsukasa, T. Soma, and A. Uschmajew, On orthogonal tensors and best rank-one approximation ratio, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 400--425, https://doi.org/10.1137/17M1144349.
36.
L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, in Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), 2005, pp. 129--132.
37.
H. Lin, B. Zhou, and B. Mo, Upper bounds for H-and Z-spectral radii of uniform hypergraphs, Linear Algebra Appl., 510 (2016), pp. 205--221.
38.
C. Ling and L. Qi, $l^{k,s}$-Singular values and spectral radius of rectangular tensors, Front. Math. China, 8 (2013), pp. 63--83.
39.
L. Liu, L. Kang, and S. Bai, Bounds on the spectral radius of uniform hypergraphs, Discrete Appl. Math., 259 (2019), pp. 160--169.
40.
L. Liu, L. Kang, and X. Yuan, On the principal eigenvectors of uniform hypergraphs, Linear Algebra Appl., 511 (2016), pp. 430--446.
41.
C. Lv, L. You, and X.-D. Zhang, A sharp upper bound on the spectral radius of a nonnegative $k$-uniform tensor and its applications to (directed) hypergraphs, J. Inequalities Appl., 2020 (2020), pp. 1--16.
42.
L. Neuhäuser, R. Lambiotte, and M. T. Schaub, Consensus dynamics and opinion formation on hypergraphs, in Higher-Order Systems, Springer, 2022, pp. 347--376.
43.
M. Ng, L. Qi, and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1090--1099, https://doi.org/10.1137/09074838X.
44.
Q. Nguyen, A. Gautier, and M. Hein, A flexible tensor block coordinate ascent scheme for hypergraph matching, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5270--5278.
45.
Q. Nguyen, F. Tudisco, A. Gautier, and M. Hein, An efficient multilinear optimization framework for hypergraph matching, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2016), pp. 1054--1075.
46.
D. Noutsos and R. S. Varga, On the Perron--Frobenius theory for complex matrices, Linear Algebra Appl., 437 (2012), pp. 1071--1088.
47.
R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc., 75 (1988).
48.
G. Peyré and M. Cuturi, Computational optimal transport: With applications to data science, Found. Trends Mach. Learn., 11 (2019), pp. 355--607.
49.
Y. Song and L. Qi, Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451 (2014), pp. 1--14.
50.
D. Steinberg, Computation of Matrix Norms with Applications to Robust Optimization, Tech. report, Technion--Israel Institute of Technology, 2005.
51.
B.-S. Tam, A cone-theoretic approach to the spectral theory of positive linear operators: The finite dimensional case, Taiwanese J. Math., 5 (2001), pp. 207--277.
52.
P. Tarazaga, M. Raydan, and A. Hurman, Perron--Frobenius theorem for matrices with some negative entries, Linear Algebra Appl., 328 (2001), pp. 57--68.
53.
F. Tudisco, F. Arrigo, and A. Gautier, Node and layer eigenvector centralities for multiplex networks, SIAM J. Appl. Math., 78 (2018), pp. 853--876, https://doi.org/10.1137/17M1137668.
54.
F. Tudisco, A. R. Benson, and K. Prokopchik, Nonlinear higher-order label spreading, in Proceedings of the Web Conference 2021, ACM, 2021, pp. 2402--2413.
55.
F. Tudisco, V. Cardinali, and C. Fiore, On complex power nonnegative matrices, Linear Algebra Appl., 471 (2015), pp. 449--468.
56.
F. Tudisco and D. J. Higham, Node and edge nonlinear eigenvector centrality for hypergraphs, Commun. Phys., 4 (2021), pp. 1--10.
57.
F. Tudisco and D. J. Higham, Core-periphery detection in hypergraphs, SIAM J. Math. Data Sci., 5 (2023), pp. 1--21, https://doi.org/10.1137/22M1480926.
58.
Q. Yang and Y. Yang, Further results for the Perron--Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1236--1250, https://doi.org/10.1137/100813671.
59.
Y. Yang and Q. Yang, Further results for Perron--Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2517--2530, https://doi.org/10.1137/090778766.
60.
A. Yu, M. Lu, and F. Tian, On the spectral radius of graphs, Linear Algebra Appl., 387 (2004), pp. 41--49.
61.
L. Zhang, Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor, Front. Math. China, 8 (2013), pp. 141--153.
62.
W. Zhang, L. Liu, L. Kang, and Y. Bai, Some properties of the spectral radius for general hypergraphs, Linear Algebra Appl., 513 (2017), pp. 103--119.
63.
G. Zhou, L. Caccetta, and L. Qi, Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor, Linear Algebra Appl., 438 (2013), pp. 959--968.
64.
G. Zhou, L. Caccetta, K. L. Teo, and S.-Y. Wu, Nonnegative polynomial optimization over unit spheres and convex programming relaxations, SIAM J. Optim., 22 (2012), pp. 987--1008, https://doi.org/10.1137/110827910.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 495 - 536
ISSN (online): 1095-7200

History

Published online: 9 May 2023

Keywords

  1. Perron--Frobenius theorem
  2. Birkhoff--Hopf theorem
  3. nonnegative tensor
  4. tensor power method
  5. tensor eigenvalue
  6. tensor singular value
  7. tensor norm

MSC codes

  1. 47H07
  2. 47J10
  3. 15B48
  4. 47H09
  5. 47H10

Authors

Affiliations

Funding Information

Bundesministerium für Bildung und Forschung : PriSyn 16KISA031
H2020 European Research Council https://doi.org/10.13039/100010663 : NOLEPRO 307793
H2020 Marie Skłodowska-Curie Actions https://doi.org/10.13039/100010665 : MAGNET 744014

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media