Abstract.

This paper is concerned with the exact solution of mixed-integer programs (MIPs) over the rational numbers, i.e., without any roundoff errors and error tolerances. Here, one computational bottleneck that should be avoided whenever possible is to employ large-scale symbolic computations. Instead it is often possible to use safe directed rounding methods, e.g., to generate provably correct dual bounds. In this work, we continue to leverage this paradigm and extend an exact branch-and-bound framework by separation routines for safe cutting planes, based on the approach first introduced by Cook, Dash, Fukasawa, and Goycoolea in 2009 [INFORMS J. Comput., 21 (2009), pp. 641–649]. Constraints are aggregated safely using approximate dual multipliers from an LP solve, followed by mixed-integer rounding to generate provably valid, although slightly weaker inequalities. We generalize this approach to problem data that is not representable in floating-point arithmetic, add routines for controlling the encoding length of the resulting cutting planes, and show how these cutting planes can be verified according to the VIPR certificate standard. Furthermore, we analyze the performance impact of these cutting planes in the context of an exact MIP framework, showing that we can solve 21.5% more instances to exact optimality and reduce solving times by 26.8% on the MIPLIB 2017 benchmark test set.

Keywords

  1. mixed-integer programming
  2. cutting planes
  3. rational arithmetic
  4. exact computation
  5. symbolic computations
  6. certificate of correctness

MSC codes

  1. 65K05
  2. 90C11
  3. 90-08

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

We would like to thank Fabian Frickenstein for his work on VIPR checking and completion. We also thank the anonymous reviewers for their valuable comments and suggestions.

References

1.
T. Achterberg, Constraint Integer Programming, Ph.D. thesis, Technische Universität Berlin, 2007.
2.
T. Achterberg and R. Wunderling, Mixed integer programming: Analyzing 12 years of progress, in Facets of Combinatorial Optimization, M. Jünger and G. Reinelt, eds., Springer, New York, 2013, pp. 449–481, https://doi.org/10.1007/978-3-642-38189-8_18.
3.
D. L. Applegate, R. E. Bixby, V. Chvátal, W. Cook, D. G. Espinoza, M. Goycoolea, and K. Helsgaun, Certification of an optimal TSP tour through 85,900 cities, Oper. Res. Lett., 37 (2009), pp. 11–15, https://doi.org/10.1016/j.orl.2008.09.006.
4.
J. Berg, B. Bogaerts, J. Nordström, A. Oertel, and D. Vandesande, Certified core-guided MaxSAT solving, in Proceedings of the 29th International Conference on Automated Deduction, 2023.
5.
M. Bofill, F. Manyà, A. Vidal, and M. Villaret, New complexity results for Łukasiewicz logic, Soft Comput., 23 (2019), pp. 2187–2197, https://doi.org/10.1007/s00500-018-3365-9.
6.
B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, Certified symmetry and dominance breaking for combinatorial optimisation, Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022, pp. 3698–3707, https://doi.org/10.1609/aaai.v36i4.20283.
7.
B. A. Burton and M. Ozlen, Computing the crosscap number of a knot using integer programming and normal surfaces, ACM Trans. Math. Software, 39 (2012), https://doi.org/10.1145/2382585.2382589.
8.
K. Cheung, A. Gleixner, and D. Steffy, Verifying Integer Programming Results, https://github.com/ambros-gleixner/VIPR.
9.
K. K. Cheung, A. Gleixner, and D. E. Steffy, Verifying integer programming results, in International Conference on Integer Programming and Combinatorial Optimization, Springer, New York, 2017, pp. 148–160, https://doi.org/10.1007/978-3-319-59250-3_13.
10.
M. Conforti, G. Cornuejols, and G. Zambelli, Integer Programming, Springer, New York, 2014.
11.
W. Cook, S. Dash, R. Fukasawa, and M. Goycoolea, Numerically safe gomory mixed-integer cuts, INFORMS J. Comput., 21 (2009), pp. 641–649, https://doi.org/10.1287/ijoc.1090.0324.
12.
W. Cook, T. Koch, D. E. Steffy, and K. Wolter, A hybrid branch-and-bound approach for exact rational mixed-integer programming, Math. Program. Comput., 5 (2013), pp. 305–344, https://doi.org/10.1007/s12532-013-0055-6.
13.
L. Eifler and A. Gleixner, A computational status update for exact rational mixed integer programming, Math. Program., 197 (2023), pp. 793–812, https://doi.org/10.1007/s10107-021-01749-5.
14.
L. Eifler, A. Gleixner, and J. Pulaj, A safe computational framework for integer programming applied to Chvátal’s conjecture, ACM Trans. Math. Software, 48 (2022), https://doi.org/10.1145/3485630.
15.
J. Elffers, S. Gocht, C. McCreesh, and J. Nordström, Justifying all differences using pseudo-boolean reasoning, Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020, pp. 1486–1494, https://doi.org/10.1609/aaai.v34i02.5507.
16.
D. G. Espinoza, On Linear Programming, Integer Programming and Cutting Planes, Ph.D. thesis, Georgia Institute of Technology, 2006.
17.
A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. M. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H. Mittelmann, D. Ozyurt, T. Ralphs, D. Salvagnin, and Y. Shinano, MIPLIB 2017: Data-driven compilation of the 6th mixed-integer programming library, Math. Program. Comput., 13 (2021), pp. 443–490, https://doi.org/10.1007/s12532-020-00194-3.
18.
A. Gleixner and D. E. Steffy, Linear programming using limited-precision oracles, Math. Program., 183 (2020), pp. 525–554, https://doi.org/10.1007/s10107-019-01444-6.
20.
T. Granlund and G. D. Team, GNU MP 6.0 Multiple Precision Arithmetic Library, Samurai Media Limited, London, 2015.
21.
Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh, Lifted cover inequalities for 0-1 integer programs: Complexity, INFORMS J. Comput., 11 (1999), pp. 117–123.
22.
M. J. Heule, W. A. Hunt, and N. Wetzler, Trimming while checking clausal proofs, in Proceedings of Formal Methods in Computer-Aided Design, 2013, pp. 181–188, https://doi.org/10.1109/FMCAD.2013.6679408.
23.
A. Hoen and L. Gottwald, scipopt/papilo: v2.0.0, 2022, https://doi.org/10.5281/zenodo.6414882.
24.
F. Kenter and D. Skipper, Integer-programming bounds on pebbling numbers of cartesian-product graphs, in Combinatorial Optimization and Applications, D. Kim, R. N. Uma, and A. Zelikovsky, eds., Springer, New York, 2018, pp. 681–695, https://doi.org/10.1007/978-3-030-04651-4_46.
25.
A. Y. Khinchin, Continued Fractions, revised ed., Dover, New York.
26.
A. M. Koster, A. Zymolka, and M. Kutschka, Algorithms to separate \(\{0,\frac{1}{2}\}\) Chvátal-Gomory cuts, Algorithmica, 55 (2009), pp. 375–391, https://doi.org/10.1007/s00453-008-9218-7.
27.
G. Lancia, E. Pippia, and F. Rinaldi, Using integer programming to search for counterexamples: A case study, in Mathematical Optimization Theory and Operations Research, A. Kononov, M. Khachay, V. A. Kalyagin, and P. Pardalos, eds., Springer, New York, 2020, pp. 69–84, https://doi.org/10.1007/978-3-030-49988-4.
28.
S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, Reading, MA, 1966.
29.
A. N. Letchford and G. Souli, On lifted cover inequalities: A new lifting procedure with unusual properties, Oper. Res. Lett., 47 (2019), pp. 83–87, https://doi.org/10.1016/j.orl.2018.12.005.
30.
H. Marchand and L. Wolsey, Aggregation and mixed integer rounding to solve MIPs, Oper. Res., 49 (2001), pp. 325–468, https://doi.org/10.1287/opre.49.3.363.11211.
31.
M. Miltenberger, A. Gleixner, T. Koch, M. Pfetsch, A. Hoen, T. Achterberg, F. Schlösser, S. Vigerske, D. Rehfeldt, micwinx, G. Hendel, J. Witzig, M. Besançon, D. Steffy, bzfberth, G. gamrath, L. Gottwald, fserra, P. Wellner, A. Ebrahim, H. Mulackal, and J. Nicolas-Thouvenin, scipopt/soplex: v6.0.0, 2022, https://doi.org/10.5281/zenodo.6414886.
32.
A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer programming, Math. Program., 99 (2002), pp. 283–296, https://doi.org/10.1007/s10107-003-0433-3.
33.
M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia, 2001, https://doi.org/10.1137/1.9780898718072.
34.
J. Pulaj, Cutting planes for families implying Frankl’s conjecture, Math. Comp., 89 (2020), pp. 829–857, https://doi.org/10.1090/mcom/3461.
35.
Y. Sahraoui, P. Bendotti, and C. D’Ambrosio, Real-world hydro-power unit-commitment: Dealing with numerical errors and feasibility issues, Energy, 184 (2019), pp. 91–104, https://doi.org/10.1016/j.energy.2017.11.064.
36.
A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, New York, 1986.
37.
D. E. Steffy and K. Wolter, Valid linear programming bounds for exact mixed-integer programming, INFORMS J. Comput., 25 (2013), pp. 271–284, https://doi.org/10.1287/ijoc.1120.0501.
38.
N. Wetzler, M. Heule, and W. A. Hunt, Jr., DRAT-trim: Efficient checking and trimming using expressive clausal proofs, in Theory and Applications of Satisfiability Testing, Lecture Notes in Comput. Sci. 8561, C. Sinz and U. Egly, eds., Springer, New York, 2014, pp. 422–429, https://doi.org/10.1007/978-3-319-09284-3_31.
39.
K. Wilken, J. Liu, and M. Heffernan, Optimal instruction scheduling using integer programming, SIGPLAN Not., 35 (2000), pp. 121–133, https://doi.org/10.1145/358438.349318.

Information & Authors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization
Pages: 742 - 763
ISSN (online): 1095-7189

History

Submitted: 22 March 2023
Accepted: 22 October 2023
Published online: 16 February 2024

Keywords

  1. mixed-integer programming
  2. cutting planes
  3. rational arithmetic
  4. exact computation
  5. symbolic computations
  6. certificate of correctness

MSC codes

  1. 65K05
  2. 90C11
  3. 90-08

Authors

Affiliations

Zuse Institute Berlin, 14195 Berlin, Germany.
Ambros Gleixner
Zuse Institute Berlin, 14195 Berlin, Germany, and HTW Berlin, 10318 Berlin, Germany.

Funding Information

German Federal Ministry of Education and Research
Funding: The work for this article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF grants 05M14ZAM and 05M20ZBM).

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media