Abstract.

We are interested in the singular behavior at the origin of solutions to the equation \({\mathscr H} \rho = e\) on a half-axis, where \(\mathscr H\) is the one-sided Hilbert transform, \(\rho\) an unknown solution, and \(e\) a known function. This is a simpler model problem on the path to understanding wave field singularities caused by curve-shaped scatterers in a planar domain. We prove that \(\rho\) has a singularity of the form \({\mathscr M}[e](1/2)/ \sqrt{t}\), where \(\mathscr M\) is the Mellin transform. To do this, we use specially built function spaces \({\mathscr M}^\prime (a,b)\) by Zemanian, and these allow us to precisely investigate the relationship between the Mellin and Hilbert transforms. Fourier comes into play in the sense that the Mellin transform is simpy the Fourier transform on the locally compact Abelian multiplicative group of the half-line, and as a more familiar operator, it guides our investigation.

Keywords

  1. half-line
  2. Mellin transform
  3. singular behavior
  4. vertical strip
  5. unique solution

MSC codes

  1. 46F12
  2. 68R10
  3. 68U05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Alessandrini and E. Sincich, Cracks with impedance; stable determination from boundary data, Indiana Univ. Math. J., 62 (2013), pp. 947–989, https://doi.org/10.1512/iumj.2013.62.5124.
2.
K. Astala, L. Päivärinta, and E. Saksman, The finite Hilbert transform in weighted spaces, Proc. Roy. Soc. Edinburgh Sect. A Math., 126 (1996), pp. 1157–1167, https://doi.org/10.1017/s0308210500023337.
3.
J. Bertrand, P. Bertrand, and J. P. Ovarlez, The Mellin transform, in Transforms and Applications Handbook, The Electrical Engineering Handbook Series, A. D. Poularikas, ed., CRC Press, Boca Raton, FL, 1995, Chapter 12.
4.
E. Blåsten, L. Päivärinta, and S. Sadique, Unique determination of the shape of a scattering screen from a passive measurement, Mathematics, 8 (2020), 1156, https://doi.org/10.3390/math8071156.
5.
M. D. Bonis, B. D. Vecchia, and G. Mastroianni, Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros, J. Comput. Appl. Math., 140 (2002), pp. 209–229, https://doi.org/10.1016/s0377-0427(01)00529-5.
6.
G. B. Folland, Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.
7.
J. B. J. Fourier, Théorie analytique de la chaleur, Chez Firmin Didot, 1822.
8.
A. Friedman and M. Vogelius, Determining cracks by boundary measurements, Indiana Univ. Math. J., 38 (1989), pp. 527–556, https://doi.org/10.1512/iumj.1989.38.38025.
9.
V. P. Havin and N. K. Nikolski, eds., Commutative Harmonic Analysis II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988 (in Russian), Springer-Verlag, Berlin, 1998 (in English).
10.
D. Hilbert, Über eine Anwendung der Integralgleichungen auf ein Problem der Funktionentheorie, in Verhandlungen des 3. Internationalen Mathematiker-Kongresses: in Heidelberg vom 8. bis 13. August 1904, A. Krazer ed., Teubner, Leipzig, 1905, https://doi.org/10.11588/HEIDOK.00016038.
11.
F. W. King, Hilbert Transforms, Cambridge University Press, Cambridge, UK, 2009.
12.
H. J. Mellin, Über einen Zusammenhang Zwischen Gewissen Linearen Differential- Und Differenzengleichungen, Acta Math., 9 (1887), pp. 137–166, https://doi.org/10.1007/bf02406734.
13.
O. P. Misra and J. L. Lavoine, Transform Analysis of Generalized Functions, North–Holland Mathematics Studies, Elsevier, Amsterdam, 1986.
14.
S. Olver, Computing the Hilbert transform and its inverse, Math. Comput., 80 (2011), pp. 1745–1767, https://doi.org/10.1090/s0025-5718-2011-02418-x.
15.
E. Pap, Complex Analysis Through Examples and Exercises, Kluwer Texts in the Mathematical Sciences 21, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1999.
16.
S. L. Paveri-Fontana and P. F. Zweifel, Erratum: The half-Hartley and half-Hilbert transforms, J. Math. Phys., 35 (1994), 6226, https://doi.org/10.1063/1.530670.
17.
S. L. Paveri-Fontana and P. F. Zweifel, The half-Hartley and the half-Hilbert transform, J. Math. Phys., 35 (1994), pp. 2648–2656, https://doi.org/10.1063/1.530529.
18.
W. Rudin, Fourier Analysis on Groups, Wiley, Hoboken, NJ, 1990, https://doi.org/10.1002/9781118165621.
19.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.
20.
E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.
21.
E. P. Stephan and W. L. Wendland, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems, Appl. Anal., 18 (1984), pp. 183–219, https://doi.org/10.1080/00036818408839520.
22.
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed., The Clarendon Press, Oxford, UK, 1948.
23.
F. G. Tricomi, Integral Equations, Interscience Publishers, New York, 1957.
24.
A. H. Zemanian, Generalized Integral Transformations, Wiley, New York, 1969.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 7529 - 7548
ISSN (online): 1095-7154

History

Submitted: 23 March 2023
Accepted: 4 August 2023
Published online: 8 November 2023

Keywords

  1. half-line
  2. Mellin transform
  3. singular behavior
  4. vertical strip
  5. unique solution

MSC codes

  1. 46F12
  2. 68R10
  3. 68U05

Authors

Affiliations

Computational Engineering, School of Engineering Science, LUT University, 15210 Lahti, Finland.
Lassi Päivärinta
Division of Mathematics, Tallinn University of Technology, Department of Cybernetics, 19086 Tallinn, Estonia.
Sadia Sadique Contact the author
Division of Mathematics, Tallinn University of Technology, Department of Cybernetics, 19086 Tallinn, Estonia.

Funding Information

Funding: The work of the authors was supported by the Estonian Research Council’s grant PRG 832. The work of the first author was also partially supported by the Academy of Finland projects 312124 and 336787.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media