Abstract.

We prove Besov boundary regularity for solutions of the homogeneous Dirichlet problem for fractional-order quasi-linear operators with variable coefficients on Lipschitz domains \(\Omega\) of \(\mathbb{R}^d\) . Our estimates are consistent with the boundary behavior of solutions on smooth domains and apply to fractional \(p\) -Laplacians and operators with finite horizon. The proof exploits the underlying variational structure and uses a new and flexible local translation operator. We further apply these regularity estimates to derive novel error estimates for finite element approximations of fractional \(p\) -Laplacians and present several simulations that reveal the boundary behavior of solutions.

Keywords

  1. fractional quasi-linear operators
  2. Besov regularity
  3. Lipschitz domains
  4. finite element approximation

MSC codes

  1. 35R11
  2. 35J60
  3. 47G20
  4. 65N30
  5. 46E35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Abels and G. Grubb, Fractional-order operators on nonsmooth domains, J. Lond. Math. Soc., 107 (2023), pp. 1297–1350, https://doi.org/10.1112/jlms.12712.
2.
G. Acosta and J. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), pp. 472–495, https://doi.org/10.1137/15M1033952.
3.
R. Adams and J. Fournier, Sobolev Spaces, Elsevier, 2003.
4.
G. Akagi, G. Schimperna, A. Segatti, and L. V. Spinolo, Quantitative estimates on localized finite differences for the fractional Poisson problem, and applications to regularity and spectral stability, Commun. Math. Sci., 16 (2018), pp. 913–961, https://doi.org/10.4310/CMS.2018.v16.n4.a2.
5.
A. Ataei, Boundary Behavior of Solutions to Fractional \(p\) -Laplacian Equation, preprint, arXiv:2304.03624, 2023.
6.
C. Atkinson and C. Jones, Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo-plastic fluid, Quart. J. Mech. Appl. Math., 27 (1974), pp. 193–211.
7.
J. Barrett and W. Liu, Finite element approximation of the \(p\) -Laplacian, Math. Comp., 61 (1993), pp. 523–537.
8.
J. Benedikt, P. Girg, L. Kotrla, and P. Takáč, Origin of the \(p\) -Laplacian and A. Missbach, Electron. J. Differ. Equ., 2018 (2018), 17.
9.
D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Res., 36 (2000), pp. 1403–1412.
10.
J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, 1976.
11.
J. Borthagaray, W. Li, and R. Nochetto, Fractional elliptic problems on Lipschitz domains: Regularity and approximation, in A \(^3\) N \(^2\) M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models, Proceedings of the 50th John H. Barrett Memorial Lectures, 2023.
12.
J. Borthagaray and R. Nochetto, Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains, J. Funct. Anal., 284 (2023), 109829, https://doi.org/10.1016/j.jfa.2022.109829.
13.
J. Borthagaray and R. Nochetto, Constructive approximation on graded meshes for the integral fractional Laplacian, Constr. Approx., 57 (2023), pp. 463–487, https://doi.org/10.1007/s00365-023-09617-5.
14.
J. Borthagaray, R. Nochetto, and A. Salgado, Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian, Math. Models Methods Appl. Sci., 29 (2019), pp. 2679–2717.
15.
J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, IOS, Amsterdam, 2001, pp. 439–455.
16.
L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional \(p\) -Laplace equation in the superquadratic case, Adv. Math., 304 (2017), pp. 300–354, https://doi.org/10.1016/j.aim.2016.03.039.
17.
O. Burkovska and M. Gunzburger, Regularity analyses and approximation of nonlocal variational equality and inequality problems, J. Math. Anal. Appl., 478 (2019), pp. 1027–1048, https://doi.org/10.1016/j.jmaa.2019.05.064.
18.
L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations: The Abel symposium 2010, Proceedings of the Abel Symposium, Oslo, Norway, 2010, Springer, Berlin, 2012, pp. 37–52, https://doi.org/10.1007/978-3-642-25361-4_3.
19.
S.-S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math., 54 (1989), pp. 373–393.
20.
P. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Appl. Math. 40, SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898719208.
21.
P. Ciarlet, Jr., Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces, J. Numer. Math., 21 (2013), pp. 173–180, https://doi.org/10.1515/jnum-2013-0007.
22.
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financ. Math. Ser., Chapman and Hall/CRC, Boca Raton, FL, 2004, https://doi.org/10.1201/9780203485217.
23.
F. del Teso, D. Gómez-Castro, and J. Vázquez, Three representations of the fractional \(p\) -Laplacian: Semigroup, extension and Balakrishnan formulas, Fract. Calc. Appl. Anal., 24 (2021), pp. 966–1002, https://doi.org/10.1515/fca-2021-0042.
24.
F. del Teso, M. Medina, and P. Ochoa, Higher-order asymptotic expansions and finite difference schemes for the fractional \(p\) -laplacian, Math. Ann., (2023), https://doi.org/10.1007/s00208-023-02748-x.
25.
W. Deng, B. Li, W. Tian, and P. Zhang, Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16 (2018), pp. 125–149, https://doi.org/10.1137/17M1116222.
26.
J. Diaz and F. De Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25 (1994), pp. 1085–1111, https://doi.org/10.1137/S0036141091217731.
27.
J. I. Díaz, G. Hetzer, and L. Tello, An energy balance climate model with hysteresis, Nonlinear Anal., 64 (2006), pp. 2053–2074, https://doi.org/10.1016/j.na.2005.07.038.
28.
L. Diening and S. Nowak, Calderón-Zygmund Estimates for the Fractional \(p\) -Laplacian, preprint, arXiv:2303.02116, 2023.
29.
B. Dyda and M. Kassmann, On weighted Poincaré inequalities, Ann. Acad. Sci. Fenn. Math., 38 (2013), pp. 721–726.
30.
B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case, IMA J. Numer. Anal., 20 (2000), pp. 203–234, https://doi.org/10.1093/imanum/20.2.203.
31.
B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. II. The three-dimensional case, Numer. Math., 92 (2002), pp. 467–499, https://doi.org/10.1007/s002110100319.
32.
J. Fernández Bonder, A. Salort, and H. Vivas, Interior and up to the boundary regularity for the fractional g-Laplacian: The convex case, Nonlinear Anal., 223 (2022), 113060, https://doi.org/10.1016/j.na.2022.113060.
33.
R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), pp. 41–76.
34.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman, Boston, MA, 1985.
35.
G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu\) -transmission pseudodifferential operators, Adv. Math., 268 (2015), pp. 478–528, https://doi.org/10.1016/j.aim.2014.09.018.
36.
A. Iannizzotto, S. Mosconi, and M. Squassina, Global Hölder regularity for the fractional \(p\) -Laplacian, Rev. Mat. Iberoam., 32 (2016), pp. 1353–1392, https://doi.org/10.4171/RMI/921.
37.
A. Iannizzotto, S. J. N. Mosconi, and M. Squassina, Fine boundary regularity for the degenerate fractional \(p\) -Laplacian, J. Funct. Anal., 279 (2020), 108659, https://doi.org/10.1016/j.jfa.2020.108659.
38.
M. Kim, K.-A. Lee, and S.-C. Lee, The Wiener criterion for nonlocal Dirichlet problems, Comm. Math. Phys., 400 (2023), pp. 1961–2003.
39.
J. Korvenpää, T. Kuusi, and G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differential Equations, 55 (2016), 63.
40.
T. A. M. Langlands, B. I. Henry, and S. L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions, J. Math. Biol., 59 (2009), pp. 761–808, https://doi.org/10.1007/s00285-009-0251-1.
41.
T. A. M. Langlands, B. I. Henry, and S. L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: Finite domain solutions, SIAM J. Appl. Math., 71 (2011), pp. 1168–1203, https://doi.org/10.1137/090775920.
42.
S. Z. Levendorskiĭ, Pricing of the American put under Lévy processes, Int. J. Theor. Appl. Finance, 7 (2004), pp. 303–335, https://doi.org/10.1142/S0219024904002463.
43.
V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), pp. 230–238, https://doi.org/10.1006/jfan.2002.3955.
44.
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
45.
R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), pp. R161–R208, https://doi.org/10.1088/0305-4470/37/31/R01.
46.
S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, in Bruno Pini Mathematical Analysis Seminar 2016, Bruno Pini Math. Anal. Semin. 7, Univ. Bologna, Alma Mater Stud., Bologna, Italy, 2016, pp. 147–164.
47.
G. Savaré, Regularity results for elliptic equations in Lipschitz domains, J. Funct. Anal., 152 (1998), pp. 176–201.
48.
L. Tartar, Interpolation non linéaire et régularité, J. Funct. Anal., 9 (1972), pp. 469–489, https://doi.org/10.1016/0022-1236(72)90022-5.
49.
H. Triebel, Theory of Function Spaces, Modern Birkhäuser Classics, Springer, Basel, 2010, https://doi.org/10.1007/978-3-0346-0416-1.
50.
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), pp. 49–44.
51.
M. I. Višik and G. I. Èskin, Convolution equations in a bounded region, Uspehi Mat. Nauk, 20 (1965), pp. 89–152; English translation, Russian Math. Surveys, 20 (1965), pp. 86–151.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4006 - 4039
ISSN (online): 1095-7154

History

Submitted: 30 May 2023
Accepted: 5 March 2024
Published online: 4 June 2024

Keywords

  1. fractional quasi-linear operators
  2. Besov regularity
  3. Lipschitz domains
  4. finite element approximation

MSC codes

  1. 35R11
  2. 35J60
  3. 47G20
  4. 65N30
  5. 46E35

Authors

Affiliations

Instituto de Matemática y Estadística “Rafael Laguardia”, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay.
Institute of Computational Mathematics and Scientific/Engineering Computing of the Chinese Academy of Sciences, Beijing 100190 China.
Ricardo H. Nochetto
Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA.

Funding Information

Fondo Clemente Estable: 2022-172393
Funding: The first author has been supported in part by Fondo Clemente Estable grant 2022-172393. The third author has been supported in part by NSF grant DMS-1908267.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media