Abstract.

We study a diffuse interface model describing the complex rheology and the interfacial dynamics during phase separation in a polar liquid-crystalline emulsion. More precisely, the physical systems comprises a two-phase mixture consisting of a polar liquid crystal immersed in a Newtonian fluid. Such composite material is a paradigmatic example of complex fluids arising in Soft Matter which exhibits multiscale interplay. Beyond the Ginzburg–Landau and Frank elastic energies for the concentration and the polarization, the free energy of the system is characterized by a quadratic anchoring term which tunes the orientation of the polarization at the interface. This leads to several quasi-linear nonlinear couplings in the resulting system describing the macroscopic dynamics. In this work, we establish the first mathematical results concerning the global dynamics of two-phase complex fluids with interfacial anchoring mechanism. First, we determine a set of sufficient conditions on the parameters of the system and the initial conditions which guarantee the existence of global weak solutions in two and three dimensions. Second, we show that weak solutions are unique and globally regular in the two dimensional case. Finally, we complement our analysis with some numerical simulations to display polarization and interfacial anchoring.

Keywords

  1. polar liquid-crystalline emulsion
  2. quadratic anchoring
  3. global weak solutions
  4. regularity

MSC codes

  1. 35D30
  2. 35Q35
  3. 76D03
  4. 76T05

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

The authors wish to thank Francesco Ballarin, Andrea Cianchi, and Cristiana De Filippis for fruitful discussions, and the two reviewers for helpful comments that improved the quality of our paper.

References

1.
H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), pp. 463–506.
2.
H. Abels, H. Garcke, and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013.
3.
H. Abels and M. Wilke, Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), pp. 3176–3193.
4.
P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, John Wiley & Sons, 2006.
5.
K. R. Amundson and M. Srinivasarao, Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation, Phys. Rev. E, 58 (1998), R1211.
6.
S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, and J. Zhang, PETSc/TAO Users Manual, Technical report ANL-21/39 - Revision 3.17, Argonne National Laboratory, Lemont, IL, 2022.
7.
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Science & Business Media, 2010.
8.
L. L. Beecroft and C. K. Ober, Nanocomposite materials for optical applications, Chem. Mater., 9 (1997), pp. 1302–1317.
9.
G. Bevilacqua, X. Shao, J. R. Saylor, J. B. Bostwick, and P. Ciarletta, Faraday waves in soft elastic solids, Proc. Roy. Soc. A, 476 (2020), 20200129.
10.
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Appl. Math. Sci. 183, Springer, New York, 2012.
11.
M. E. Cates and E. Tjhung, Theories of binary fluid mixtures: From phase-separation kinetics to active emulsions, J. Fluid Mech., 836 (2018), P1.
12.
C. Chen, K. Pan, and X. Yang, Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals and viscous fluids, Appl. Numer. Math., 158 (2020), pp. 1–21.
13.
S.-B. Choi, The Grand Challenges in smart materials research, Front. Mater., 1 (2014), 11.
14.
A. Cianchi and V. G. Maz’ya, Optimal second-order regularity for the p-Laplace system, J. Math. Pures Appl., 132 (2019), pp. 41–78.
15.
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Tata McGraw-Hill Education, 1955.
16.
J. Doane, N. Vaz, B.-G. Wu, and S. Žumer, Field controlled light scattering from nematic microdroplets, Appl. Phys. Lett., 48 (1986), pp. 269–271.
17.
P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, 1995.
18.
D. L. Elbert, Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review, Acta Biomater., 7 (2011), pp. 31–56.
19.
C. Fernández-Rico, T. Sai, A. Sicher, R. W. Style, and E. R. Dufresne, Putting the squeeze on phase separation, JACS Au, 2 (2021), pp. 66–73.
20.
S. Frigeri and M. Grasselli, Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials, Dyn. Partial Differ. Equ., 9 (2012), pp. 273–304.
21.
M.-H. Giga, A. Kirshtein, and C. Liu, Variational modeling and complex fluids, Handbook Math. Anal. Mech. Viscous Fluids, (2017), pp. 1–41.
22.
A. Giorgini, Well-posedness of the two-dimensional Abels–Garcke–Grün model for two-phase flows with unmatched densities, Calc. Var. Partial Differential Equations, 60 (2021), 100.
23.
A. Giorgini, Existence and stability of strong solutions to the Abels–Garcke–Grün model in three dimensions, Interfaces Free Bound., 24 (2022), pp. 565–608.
24.
A. Giorgini, M. Grasselli, and H. Wu, The Cahn–Hilliard–Hele–shaw system with singular potential, Ann. Inst. Henri Poincaré C, 35 (2018), pp. 1079–1118.
25.
A. Giorgini, A. Miranville, and R. Temam, Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system, SIAM J. Math. Anal., 51 (2019), pp. 2535–2574, https://doi.org/10.1137/18M1223459.
26.
F. Guillén-González, M.Á. Rodríguez-Bellido, and G. Tierra, Linear unconditional energy-stable splitting schemes for a phase-field model for nematic–isotropic flows with anchoring effects, Internat. J. Numer. Methods Engrg., 108 (2016), pp. 535–567.
27.
F. Guillén-González, M.Á. Rodríguez-Bellido, and G. Tierra, Nematic order on a deformable vesicle with anchoring effects, Results Appl. Math., 8 (2020), 100102.
28.
F. Guillén-González, M.Á. Rodríguez-Bellido, and G. Tierra, Fluid vesicles with internal nematic order, Phys. D, 415 (2021), 132768.
29.
H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, Polymer-stabilized liquid crystal blue phases, Nat. Mater., 1 (2002), pp. 64–68.
30.
J. Kim, C. Cho, P. Palffy-Muhoray, and T. Kyu, Polymerization-induced phase separation in a liquid-crystal-polymer mixture, Phys. Rev. Lett., 71 (1993), 2232.
31.
J. M. Krishnan, A. P. Deshpande, and P. S. Kumar, Rheology of Complex Fluids, Springer, 2010.
32.
S. Kumar, S. Tan, L. Zheng, and D. M. Kochmann, Inverse-designed spinodoid metamaterials, npj Comput. Mater., 6 (2020), 73.
33.
F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), pp. 501–537.
34.
F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), pp. 135–156.
35.
A. Logg, K.-A. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Lecture Notes in Comput. Sci. Engrg 84, Springer, Berlin, Heidelberg, 2012.
36.
R. Mezzenga, Grand challenges in soft matter, Front. Soft Matter, 1 (2021), 811842.
37.
D. Michieletto and M. Marenda, Rheology and viscoelasticity of proteins and nucleic acids condensates, JACS Au, 2 (2022), pp. 1506–1521.
38.
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), pp. 545–582.
39.
A. Quarteroni, Numerical Models for Differential Problems, Vol. 2, Springer, 2009.
40.
S. T. Riahinasab, A. Keshavarz, C. N. Melton, A. Elbaradei, G. I. Warren, R. L. Selinger, B. J. Stokes, and L. S. Hirst, Nanoparticle-based hollow microstructures formed by two-stage nematic nucleation and phase separation, Nat. Commun., 10 (2019), 894.
41.
J. C. Robinson, J. L. Rodrigo, and W. Sadowski, The Three-Dimensional Navier–Stokes Equations: Classical Theory, Cambridge Stud. Adv. Math. 157, Cambridge University Press, 2016.
42.
J. Shen and X. Yang, Decoupled energy stable schemes for phase-field models of two-phase complex fluids, SIAM J. Sci. Comput., 36 (2014), pp. B122–B145, https://doi.org/10.1137/130921593.
43.
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, Providence, RI, 2013.
44.
Y. Sui, J. Jiang, G. Jin, and X. Yang, Second-order accurate and energy stable numerical scheme for an immiscible binary mixture of nematic liquid crystals and viscous fluids with strong anchoring potentials, Adv. Comput. Math., 47 (2021), 38.
45.
H. Tanaka, Viscoelastic phase separation in biological cells, Commun. Phys., 5 (2022), 167.
46.
R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conf. Ser. in Appl. Math. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1995, https://doi.org/10.1137/1.9781611970050.
47.
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer New York, 1997.
48.
E. Tjhung, A. Tiribocchi, D. Marenduzzo, and M. Cates, A minimal physical model captures the shapes of crawling cells, Nat. Commun., 6 (2015), 5420.
49.
A. Toor, T. Feng, and T. P. Russell, Self-assembly of nanomaterials at fluid interfaces, European Phys. J. E, 39 (2016), 57.
50.
Q. Tran-Cong-Miyata and H. Nakanishi, Phase separation of polymer mixtures driven by photochemical reactions: Current status and perspectives, Polym. Int., 66 (2017), pp. 213–222.
51.
H. Wu, X. Xu, and C. Liu, On the general ericksen–leslie system: Parodi’s relation, well-posedness and stability, Arch. Ration. Mech. Anal., 208 (2013), pp. 59–107.
52.
P. Yue, J. J. Feng, C. Liu, and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), pp. 293–317.
53.
J. Zhao, Q. Wang, and X. Yang, Numerical approximations to a new phase field model for two phase flows of complex fluids, Comput. Methods Appl. Mech. Engrg., 310 (2016), pp. 77–97.
54.
J. Zhao, X. Yang, J. Shen, and Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids, J. Comput. Phys., 305 (2016), pp. 539–556.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 6057 - 6120
ISSN (online): 1095-7154

History

Submitted: 12 October 2023
Accepted: 24 May 2024
Published online: 4 September 2024

Keywords

  1. polar liquid-crystalline emulsion
  2. quadratic anchoring
  3. global weak solutions
  4. regularity

MSC codes

  1. 35D30
  2. 35Q35
  3. 76D03
  4. 76T05

Authors

Affiliations

Dipartimento di Matematica, Universitá di Pisa, 56127 Pisa, Italy.
Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italy.

Funding Information

Funding: The first author was supported by the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation program, through the project ERC VAREG - Variational Approach to the Regularity of the Free Boundaries (grant agreement 853404) and by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica (INdAM) through the INdAM-GNAMPA project 2024 CUP E53C23001670001. The first author also acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Pisa, CUP I57G22000700001. The second author was supported by the MUR grant Dipartimento di Eccellenza 2023-2027 of Dipartimento di Matematica, Politecnico di Milano, and by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale per l’Alta Matematica (INdAM).

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media