Abstract

We analyze an inverse problem for water waves posed by Richard Feynman in the BBC documentary Fun to Imagine. We show that the problem can be modeled as an inverse Cauchy problem for gravity-capillary waves, conduct a detailed analysis of the Cauchy problem, and give a uniqueness proof for the inverse problem. Somewhat surprisingly, this results in a positive answer to Feynman's question. In addition, we derive stability estimates for the inverse problem for both continuous and discrete measurements, propose a simple inversion method, and conduct numerical experiments to verify our results.

Keywords

  1. inverse problems
  2. water waves
  3. partial differential equations
  4. mathematical modeling

Formats available

You can view the full content in the following formats:

References

1.
M. J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons, Cambridge University Press, 2011.
2.
T. Alazard, P. Baldi, and D. Han-Kwan, Control of water waves, J. European Math. Soc., 20 (2018), pp. 657--745.
3.
G. S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems, Cours Spéc. 25, Société Mathématique de France, Paris, 2018.
4.
G. S. Alberti and M. Santacesaria, Infinite-dimensional inverse problems with finite measurements, Arch. Ration. Mech. Anal., 243 (2022), pp. 1--31.
5.
C. Aubel and H. Bölcskei, Vandermonde matrices with nodes in the unit disk and the large sieve, Appl. Comput. Harmon. Anal., 47 (2019), pp. 53--86.
6.
Y. J. Bagul, R. M. Dhaigude, C. Chesneau, and M. Kostić, Tight exponential bounds for hyperbolic tangent, Jordan J. Math. Statist., 15 (2022), pp. 807--821.
7.
C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), pp. 1024--1065, https://doi.org/10.1137/0330055.
8.
T. J. Bridges, M. D. Groves, and D. P. Nicholls, Lectures on the Theory of Water Waves, London Math. Soc. Lecture Note Ser. 426, Cambridge University Press, 2016.
9.
M. Choulli, Applications of Elliptic Carleman Inequalities to Cauchy and Inverse Problems, Springer, 2016.
10.
G. Covi, M. de Hoop, and M. Salo, Uniqueness in an inverse problem of fractional elasticity, Proc. A, 479 (2023), art. 20230474.
11.
W. Craig, Surface water waves and tsunamis, J. Dynam. Differential Equations, 18 (2006), pp. 525--549.
12.
W. Craig, A Course on Partial Differential Equations, Grad. Stud. Math. 197, American Mathematical Society, 2018.
13.
A. Elcrat, V. Isakov, E. Kropf, and D. Stewart, A stability analysis of the harmonic continuation, Inverse Problems, 28 (2012), art. 075016.
14.
M. A. Fontelos, R. Lecaros, J. C. López-Ríos, and J. H. Ortega, Bottom detection through surface measurements on water waves, SIAM J. Control Optim., 55 (2017), pp. 3890--3907, https://doi.org/10.1137/15M1007951.
15.
T. Ghosh, A. Rüland, M. Salo, and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), art. 108505.
16.
T. Ghosh, M. Salo, and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), pp. 455--475.
17.
B. Harrach, Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem, Numer. Math., 147 (2021), pp. 29--70.
18.
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.
19.
B. Kaltenbacher and W. Rundell, Inverse Problems for Fractional Partial Differential Equations, Grad. Stud. Math. 230, American Mathematical Society, 2023.
20.
C. E. Kenig, D. Pilod, G. Ponce, and L. Vega, On the unique continuation of solutions to non-local non-linear dispersive equations, Comm. Partial Differential Equations, 45 (2020), pp. 872--886.
21.
C. E. Kenig, G. Ponce, and L. Vega, Uniqueness properties of solutions to the Benjamin-Ono equation and related models, J. Funct. Anal., 278 (2020), art. 108396.
22.
V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equ. Control Theory, 3 (2014), pp. 135--146.
23.
E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1991.
24.
N. G. Kuznetsov, V. Maz'ya, and B. Vainberg, Linear Water Waves: A Mathematical Approach, Cambridge University Press, 2002.
25.
D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, American Mathematical Society, 2013.
26.
P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim., 35 (1997), pp. 641--653, https://doi.org/10.1137/S036301299526962X.
27.
M. Mehrenberger, An Ingham type proof for the boundary observability of a $N-d$ wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), pp. 63--68.
28.
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, 2012, https://doi.org/10.1137/1.9781611972344.
29.
G. Plonka, D. Potts, G. Steidl, and M. Tasche, Numerical Fourier Analysis, Springer, 2018.
30.
R. M. Reid, Control time for gravity-capillary waves on water, SIAM J. Control Optim., 33 (1995), pp. 1577--1586, https://doi.org/10.1137/S0363012992226351.
31.
R. M. Reid and D. L. Russell, Boundary control and stability of linear water waves, SIAM J. Control Optim., 23 (1985), pp. 111--121, https://doi.org/10.1137/0323009.
32.
A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), art. 111529.
33.
S. Salsa, Partial Differential Equations in Action: From Modelling to Theory, Unitext 99, Springer, 2016.
34.
O. Scherzer, Handbook of Mathematical Methods in Imaging, Springer Science & Business Media, 2010.
35.
M. Sellier, Inverse problems in free surface flows: A review, Acta Mech., 227 (2016), pp. 913--935.
36.
B. K. Smeltzer, E. \AEsøy, A. \AAdnøy, and S. \AA. Ellingsen, An improved method for determining near-surface currents from wave dispersion measurements, J. Geophys. Res. Oceans, 124 (2019), pp. 8832--8851.
37.
G. Strang, The discrete cosine transform, SIAM Rev., 41 (1999), pp. 135--147, https://doi.org/10.1137/S0036144598336745.
38.
G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), pp. 951--977.
39.
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Springer Science & Business Media, 2009.
40.
V. Vasan and B. Deconinck, The inverse water wave problem of bathymetry detection, J. Fluid Mech., 714 (2013), pp. 562--590.
41.
R. M. Young, An Introduction to Nonharmonic Fourier Series, revised 1st ed., Elsevier, 2001.
42.
B. Zhang, Unique continuation for the Korteweg--de Vries equation, SIAM J. Math. Anal., 23 (1992), pp. 55--71, https://doi.org/10.1137/0523004.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 694 - 718
ISSN (online): 1095-7200

History

Submitted: 24 October 2023
Accepted: 18 June 2024
Published online: 7 November 2024

Keywords

  1. inverse problems
  2. water waves
  3. partial differential equations
  4. mathematical modeling

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media