Abstract.

Geometric particle-in-cell discretizations have been derived based on a discretization of the fields that is conforming with the de Rham structure of the Maxwell’s equations and a standard particle-in-cell ansatz for the fields by deriving the equations of motion from a discrete action principle. While earlier work has focused on finite-element discretization of the fields based on the theory of finite-element exterior calculus, we propose in this article an alternative formulation of the field equations that is based on the ideas conveyed by mimetic finite differences, the needed duality being expressed by the use of staggered grids. We construct a finite-difference formulation based on degrees of freedom defined as point values, edge, face, and volume integrals on a primal and its dual grid. Compared to the finite-element formulation, no mass matrix inversion is involved in the formulation of the Maxwell solver. In numerical experiments, we verify the conservation properties of the novel method and study the influence of the various parameters in the discretization.

Keywords

  1. Vlasov–Maxwell
  2. particle-in-cell
  3. commuting de Rham diagram
  4. mimetic finite differences
  5. variational discretization

MSC codes

  1. 65M06
  2. 65P10
  3. 65M25
  4. 37K05
  5. 65Z05

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

We would like to thank Martin Campos Pinto for valuable discussions and all the contributors to the GEMPICX code.

References

1.
D. N. Arnold, Finite Element Exterior Calculus, Society for Industrial and Applied Mathematics, Philadelphia, 2018, https://doi.org/10.1137/1.9781611975543.
2.
D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1–155, https://doi.org/10.1017/S0962492906210018.
3.
D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47 (2010), pp. 281–354, https://doi.org/10.1090/S0273-0979-10-01278-4.
4.
P. B. Bochev and J. M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, Springer-Verlag, Berlin, 2006, pp. 89–119, https://doi.org/10.1007/0-387-38034-5_5.
5.
M. Campos Pinto, K. Kormann, and E. Sonnendrücker, Variational framework for structure-preserving electromagnetic particle-in-cell methods, J. Sci. Comput., 91 (2022), 46, https://doi.org/10.1007/s10915-022-01781-3.
6.
N. Crouseilles, L. Einkemmer, and E. Faou, Hamiltonian splitting for the Vlasov–Maxwell equations, J. Comput. Phys., 283 (2015), pp. 224–240, https://doi.org/10.1016/j.jcp.2014.11.029.
7.
B. Fornberg, High-order finite differences and the pseudospectral method on staggered grids, SIAM J. Numer. Anal., 27 (1990), pp. 904–918, https://doi.org/10.1137/0727052.
8.
Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang, and J. Liu, Hamiltonian time integrators for Vlasov-Maxwell equations, Phys. Plasmas, 22 (2015), 124503, https://doi.org/10.1063/1.4938034.
9.
R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer., 11 (2002), pp. 237–339, https://doi.org/10.1017/S0962492902000041.
10.
E. Hirvijoki, K. Kormann, and F. Zonta, Subcycling of particle orbits in variational, geometric electromagnetic particle-in-cell methods, Phys. Plasmas, 27 (2020), 092506, https://doi.org/10.1063/5.0006403.
11.
P. Kilian, Teilchenbeschleunigung an kollisionsfreien Schockfronten, Ph.D. thesis, Julius-Maximilians-Universität Würzburg, 2015.
12.
K. Kormann and E. Sonnendrücker, Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver, J. Comput. Phys., 425 (2020), 109890, https://doi.org/10.1016/j.jcp.2020.109890.
13.
M. Kraus, K. Kormann, P. J. Morrison, and E. Sonnendrücker, GEMPIC: Geometric electromagnetic particle-in-cell methods, J. Plasma Phys., 83 (2017), https://doi.org/10.1017/S002237781700040X.
14.
J. Kreeft, A. Palha, and M. Gerritsma, Mimetic Framework on Curvilinear Quadrilaterals of Arbitrary Order, arXiv:1111.4304, 2011, https://arxiv.org/abs/1111.4304.
15.
F. E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for pasmas, Proc. Roy. Soc. London Ser. A, 248 (1958), pp. 282–287, https://doi.org/10.1098/rspa.1958.0244.
16.
A. Palha, P. P. Rebelo, R. Hiemstra, J. Kreeft, and M. Gerritsma, Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms, J. Comput. Phys., 257 (2014), pp. 1394–1422, https://doi.org/10.1016/j.jcp.2013.08.005.
17.
B. Perse, K. Kormann, and E. Sonnendrücker, Geometric particle-in-cell simulations of the Vlasov–Maxwell system in curvilinear coordinates, SIAM J. Sci. Comput., 43 (2021), pp. B194–B218, https://doi.org/10.1137/20M1311934.
18.
H. Qin, Y. He, R. Zhang, J. Liu, J. Xiao, and Y. Wang, Comment on “Hamiltonian splitting for the Vlasov–Maxwell equations”, J. Comput. Phys., 297 (2015), pp. 721–723, https://doi.org/10.1016/j.jcp.2015.04.056.
19.
N. Robidoux, Polynomial Histopolation, Superconvergent Degrees of Freedom, and Pseudospectral Discrete Hodge Operators, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6376711a3415353afad74a999c6a3d2f2c7ab38e, 2008.
20.
H. Vincenti and J.-L. Vay, Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver, Comput. Phys. Commun., 200 (2016), pp. 147–167, https://doi.org/10.1016/j.cpc.2015.11.009.
21.
W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan, M. Day, B. Friesen, K. Gott, D. Graves, M. Katz, A. Myers, T. Nguyen, A. Nonaka, M. Rosso, S. Williams, and M. Zingale, AMReX: A framework for block-structured adaptive mesh refinement, J. Open Source Softw., 4 (2019), 1370, https://doi.org/10.21105/joss.01370.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B621 - B646
ISSN (online): 1095-7197

History

Submitted: 13 December 2023
Accepted: 26 June 2024
Published online: 4 October 2024

Keywords

  1. Vlasov–Maxwell
  2. particle-in-cell
  3. commuting de Rham diagram
  4. mimetic finite differences
  5. variational discretization

MSC codes

  1. 65M06
  2. 65P10
  3. 65M25
  4. 37K05
  5. 65Z05

Authors

Affiliations

Department of Mathematics, Ruhr University Bochum, Bochum 44801, Germany.
Eric Sonnendrücker
Max Planck Institute for Plasma Physics, Garching 85748, Germany, and Department of Mathematics, Technical University of Munich, Munich 85748, Germany.

Funding Information

Funding: This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (grant agreement 101052200, EUROfusion). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. The first author acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) via the Collaborative Research Center SFB1491 Cosmic Interacting Matters—From Source to Signal.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media