Abstract.

We design a deterministic particle method for the solution of the spatially homogeneous Landau equation with uncertainty. The deterministic particle approximation is based on the reformulation of the Landau equation as a formal gradient flow on the set of probability measures, whereas the propagation of uncertain quantities is computed by means of a stochastic Galerkin (sG) representation of each particle. This approach guarantees spectral accuracy in uncertainty space while preserving the fundamental structural properties of the model: the positivity of the solution, the conservation of invariant quantities, and the entropy dissipation. We provide a regularity result for the particle method in the random space. We perform the numerical validation of the particle method in a wealth of test cases.

Keywords

  1. plasma physics
  2. Landau–Fokker–Planck equation
  3. deterministic particle methods
  4. uncertainty quantification
  5. stochastic Galerkin methods

MSC codes

  1. 65C35
  2. 65N99
  3. 76M28

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer Science & Business Media, 2005.
2.
R. Bailo, J. A. Carrillo, and J. Hu, The collisional particle-in-cell method for the Vlasov-Maxwell-Landau equations, J. Plasma Phys., 90 (2024), 905900415, https://doi.org/10.1017/S0022377824001077.
3.
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, 1985.
4.
A. V. Bobylev and K. Nanbu, Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Phys. Rev. E, 61 (2000), pp. 4576–4586, https://doi.org/10.1103/PhysRevE.61.4576.
5.
R. Caflisch, C. Wang, G. Dimarco, B. Cohen, and A. Dimits, A hybrid method for accelerated simulation of Coulomb collisions in a plasma, Multiscale Model. Simul., 7 (2008), pp. 865–887, https://doi.org/10.1137/070704939.
6.
J. A. Carrillo, K. Craig, and F. S. Patacchini, A blob method for diffusion, Calc. Var. Partial Differential Equations, 58 (2019), 53, https://doi.org/10.1007/s00526-019-1486-3.
7.
J. A. Carrillo, M. G. Delgadino, and J. Wu, Boltzmann to Landau from the gradient flow perspective, Nonlinear Anal., 219 (2022), 112824, https://doi.org/10.1016/j.na.2022.112824.
8.
J. A. Carrillo, M. G. Delgadino, and J. S. Wu, Convergence of a particle method for a regularized spatially homogeneous Landau equation, Math. Models Methods Appl. Sci., 33 (2023), pp. 971–1008, https://doi.org/10.1142/S0218202523500215.
9.
J. A. Carrillo, J. Hu, L. Wang, and J. Wu, A particle method for the homogeneous Landau equation, J. Comput. Phys. X, 7 (2020), 100066, https://doi.org/10.1016/j.jcpx.2020.100066.
10.
J. A. Carrillo, S. Jin, and Y. Tang, Random batch particle methods for the homogeneous Landau equation, Commun. Comput. Phys., 31 (2022), pp. 997–1019, https://doi.org/10.4208/cicp.OA-2021-0200.
11.
J. A. Carrillo, S. Lisini, G. Savaré, and D. Slepčev, Nonlinear mobility continuity equations and generalized displacement convexity, J. Funct. Anal., 258 (2010), pp. 1273–1309, https://doi.org/10.1016/j.jfa.2009.10.016.
12.
J. A. Carrillo, R. J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19 (2003), pp. 971–1018, https://doi.org/10.4171/rmi/376.
13.
J. A. Carrillo, L. Pareschi, and M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys., 25 (2019), pp. 508–531, https://doi.org/10.4208/cicp.OA-2017-0244.
14.
J. A. Carrillo and M. Zanella, Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties, Vietnam J. Math., 47 (2019), pp. 931–954, https://doi.org/10.1007/s10013-019-00374-2.
15.
N. Crouseilles and F. Filbet, Numerical approximation of collisional plasmas by high order methods, J. Comput. Phys., 201 (2004), pp. 546–572, https://doi.org/10.1016/j.jcp.2004.06.007.
16.
N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229 (2010), pp. 1927–1953, https://doi.org/10.1016/j.jcp.2009.11.007.
17.
G. Dimarco, R. Caflisch, and L. Pareschi, Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas, Commun. Appl. Ind. Math., 1 (2010), pp. 72–91, https://www.math.ucla.edu/~caflisch/Pubs/Pubs2010/GiacomoDimarco2010.pdf.
18.
G. Dimarco, Q. Li, L. Pareschi, and B. Yan, Numerical methods for plasma physics in collisional regimes, J. Plasma Phys., 81 (2015), pp. 1–31, https://doi.org/10.1017/S0022377814000762.
19.
G. Dimarco, L. Pareschi, and M. Zanella, Micro-macro stochastic Galerkin methods for nonlinear Fokker–Plank equations with random inputs, Multiscale Model. Simul., 22 (2024), pp. 527–560, https://doi.org/10.1137/22M1509205.
20.
M. Erbar, A gradient flow approach to the Boltzmann equation, J. Eur. Math. Soc. (JEMS), 26 (2024), pp. 4441–4490, https://doi.org/10.4171/jems/1349.
21.
F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166–187, https://doi.org/10.1006/jcph.2001.6818.
22.
I. M. Gamba, J. R. Haack, C. D. Hauck, and J. Hu, A fast spectral method for the Boltzmann collision operator with general collision kernels, SIAM J. Sci. Comput., 39 (2017), pp. B658–B674, https://doi.org/10.1137/16M1096001.
23.
M. Gerritsma, J.-B. van der Steen, P. Vos, and G. Karniadakis, Time-dependent generalized polynomial chaos, J. Comput. Phys., 229 (2010), pp. 8333–8363, https://doi.org/10.1016/j.jcp.2010.07.020.
24.
M. Gualdani and N. Zamponi, Spectral gap and exponential convergence to equilibrium for a multi-species Landau system, Bull. Sci. Math., 141 (2017), pp. 509–538, https://doi.org/10.1016/j.bulsci.2017.07.002.
25.
S. Jin and L. Pareschi, eds., Uncertainty Quantification for Hyperbolic and Kinetic Equations, SEMA SIMAI Springer Ser. 14, Springer, 2017.
26.
L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs, Multiscale Model. Simul., 16 (2018), pp. 1085–1114, https://doi.org/10.1137/17M1151730.
27.
A. Medaglia, L. Pareschi, and M. Zanella, Stochastic Galerkin particle methods for kinetic equations of plasmas with uncertainties, J. Comput. Phys., 479 (2023), 112011, https://doi.org/10.1016/j.jcp.2023.112011.
28.
A. Medaglia, L. Pareschi, and M. Zanella, Particle simulation methods for the Landau-Fokker-Planck equation with uncertain data, J. Comput. Phys., 503 (2024), 112845, https://doi.org/10.1016/j.jcp.2024.112845.
29.
A. Medaglia, A. Tosin, and M. Zanella, Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties, Partial Differ. Equ. Appl., 3 (2022), 51, https://doi.org/10.1007/s42985-022-00189-w.
30.
L. Pareschi, An introduction to uncertainty quantification for kinetic equations and related problems, in Trails in Kinetic Theory: Foundational Aspects and Numerical Methods, SEMA SIMAI Springer Ser. 25, Springer, Cham, 2021, pp. 141–181.
31.
L. Pareschi, G. Russo, and G. Toscani, Fast spectral methods for the Fokker-Planck-Landau collision operator, J. Comput. Phys., 165 (2000), pp. 216–236, https://doi.org/10.1006/jcph.2000.6612.
32.
L. Pareschi and M. Zanella, Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: Space-homogeneous case, J. Comput. Phys., 423 (2020), pp. 1098–1120, https://doi.org/10.1016/j.jcp.2020.109822.
33.
M. C. Pinto, S. Jund, S. Salmon, and E. Sonnendrücker, Charge-conserving FEM–PIC schemes on general grids, C. R. Mec., 342 (2014), pp. 570–582, https://doi.org/10.1016/j.crme.2014.06.011.
34.
L. F. Ricketson, M. S. Rosin, R. Caflisch, and A. M. Dimits, An entropy based thermalization scheme for hybrid simulations of Coulomb collisions, J. Comput. Phys., 273 (2014), pp. 77–99, https://doi.org/10.1016/j.jcp.2014.04.059.
35.
E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), pp. 201–220, https://doi.org/10.1006/jcph.1998.6148.
36.
B. Trubnikov, Particle interaction in a fully ionized plasma, Rev. Plasma Phys., 1 (1965), pp. 105–204.
37.
T. Xiao and M. Frank, A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification, J. Comput. Phys., 432 (2021), 110139, https://doi.org/10.1016/j.jcp.2021.110139.
38.
D. Xiu, Numerical Methods for Stochastic Computations, Princeton University Press, 2010.
39.
D. Xiu and G. E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644, https://doi.org/10.1137/S1064827501387826.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 687 - 710
ISSN (online): 1540-3467

History

Submitted: 13 December 2023
Accepted: 27 November 2024
Published online: 2 April 2025

Keywords

  1. plasma physics
  2. Landau–Fokker–Planck equation
  3. deterministic particle methods
  4. uncertainty quantification
  5. stochastic Galerkin methods

MSC codes

  1. 65C35
  2. 65N99
  3. 76M28

Authors

Affiliations

Centre for Analysis, Scientific Computing and Applications, Eindhoven University of Technology, Netherlands.
Mathematical Institute, University of Oxford, United Kingdom.
Mathematical Institute, University of Oxford, United Kingdom.
Department of Mathematics “F. Casorati”, University of Pavia, Italy.

Funding Information

Funding: This paper has been written within the activities of GNFM group of INdAM (National Institute of High Mathematics). The first author, the second author, and the third authors were supported by the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for Complex Particle Dynamics: Phase Transitions, Patterns and Synchronization) of the European Research Council Executive Agency (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant 883363) and by the EPSRC grant EP/T022132/1 “Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging.” The third author acknowledges partial support of MIUR-PRIN2020 project 2020JLWP23 and INdAM-GNFM project CUP E53C22001930001. The fourth author acknowledges partial support of MIUR-PRIN2020 project 2020JLWP23.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media