Abstract.

We present a method for sampling points from an algebraic manifold, either affine or projective, defined over a local field, with a prescribed probability distribution. Inspired by the work of Breiding and Marigliano [SIAM J. Math. Data Sci., 2 (2020), pp. 683–704] on sampling real algebraic manifolds, our approach leverages slicing the given variety with random linear spaces of complementary dimension. We also provide an implementation of this sampling technique and demonstrate its applicability to various contexts, including sampling from linear \(p\)-adic algebraic groups, abelian varieties, and modular curves.

Keywords

  1. \(p\)-adic manifolds
  2. sampling
  3. integration
  4. integral geometry
  5. probability

MSC codes

  1. 28A75
  2. 62D05
  3. 11F85
  4. 11S80

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

This work was initiated during the first author’s visit to the Max Planck Institute for Mathematics in the Sciences. We are grateful to the institute for its warm hospitality and inspiring research environment. We extend our thanks to Peter Bürgisser, Avinash Kulkarni, and Antonio Lerario for kindly sharing an early draft of their manuscript [9]. Special thanks go to Corrine Elliott, Steven N. Evans, Kiran Kedlaya, Bartosz Naskrecki, Bernd Sturmfels, and Tristan Vaccon for their insightful discussions and valuable feedback. Finally, we thank the anonymous referees for their thoughtful suggestions, which greatly improved the presentation and readability of this manuscript.

References

1.
R. Ait El Manssour and A. Lerario, Probabilistic enumerative geometry over \(p\)-adic numbers: Linear spaces on complete intersections, Ann. H. Lebesgue, 5 (2022), pp. 1329–1360, https://doi.org/10.5802/ahl.153.
2.
H. C. Andersen and P. Diaconis, Hit and run as a unifying device, J. Soc. Fr. Stat. & Rev. Stat. Appl., 148 (2007), pp. 5–28.
3.
M. Bhargava, J. Cremona, T. Fisher, and S. Gajović, The density of polynomials of degree \(n\) over \(\mathbb{Z}_p\) having exactly \(r\) roots in \(\mathbb{Q}_p\), Proc. Lond. Math. Soc., 124 (2022), pp. 713–736, https://doi.org/10.1112/plms.12438.
4.
A. Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer-Verlag, New York, 1991, https://doi.org/10.1007/978-1-4612-0941-6.
5.
W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), pp. 235–265, https://doi.org/10.1006/jsco.1996.0125.
6.
A. Bostan, L. González-Vega, H. Perdry, and É. Schost, From Newton sums to coefficients: Complexity issues in characteristic \(p\), in Proceedings of MEGA’05, 2005.
7.
P. Breiding and O. Marigliano, Random points on an algebraic manifold, SIAM J. Math. Data Sci., 2 (2020), pp. 683–704, https://doi.org/10.1137/19M1271178.
8.
J. H. Bruinier, Hilbert modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, pp. 105–179, https://doi.org/10.1007/978-3-540-74119-0.
9.
P. Bürgisser, A. Kulkarni, and A. Lerario, Nonarchimedean Integral Geometry, preprint, https://arxiv.org/abs/2206.03708, 2023.
10.
X. Caruso, Computations with \(p\)-adic numbers, Les cours du CIRM, 5 (2017), 75, https://doi.org/10.5802/ccirm.25.
11.
X. Caruso, Where are the zeroes of a random \(p\)-adic polynomial?, Forum Math. Sigma, 10 (2022), e55, https://doi.org/10.1017/fms.2022.27.
12.
P. Diaconis, G. Lebeau, and L. Michel, Geometric analysis for the Metropolis algorithm on Lipschitz domains, Invent. Math., 185 (2011), pp. 239–281, https://doi.org/10.1007/s00222-010-0303-6.
13.
P. Diaconis and L. Saloff-Coste, What do we know about the Metropolis algorithm?, J. Comput. Syst. Sci., 57 (1998), pp. 20–36, https://doi.org/10.1006/jcss.1998.1576.
14.
F. Diamond and J. Shurman, A First Course in Modular Forms, Grad. Texts in Math. 228, Springer-Verlag, New York, 2005, https://doi.org/10.1007/978-0-387-27226-9.
15.
D. Eisenbud and J. Harris, 3264 and All that—A Second Course in Algebraic Geometry, Cambridge University Press, Cambridge, 2016, https://doi.org/10.1017/CBO9781139062046.
16.
Y. El Maazouz, The Gaussian entropy map in valued fields, Algebr. Stat., 13 (2022), pp. 1–18, https://doi.org/10.2140/astat.2022.13.1.
17.
Y. El Maazouz and E. Kaya, Sampling from a p-adic manifold, Mathrepo code repository, https://mathrepo.mis.mpg.de/SamplingpAdicManifolds/index.html.
18.
Y. El Maazouz and N. M. Tran, Statistics and Tropicalization of Local Field Gaussian Measures, preprint, https://arxiv.org/abs/1909.00559, 2019.
19.
N. Elkies and A. Kumar, K3 surfaces and equations for Hilbert modular surfaces, Algebra Number Theory, 8 (2014), pp. 2297–2411, https://doi.org/10.2140/ant.2014.8.2297.
20.
S. N. Evans, Local field Brownian motion, J. Theoret. Probab., 6 (1993), pp. 817–850, https://doi.org/10.1007/BF01049177.
21.
S. N. Evans, \(p\)-adic white noise, chaos expansions, and stochastic integration, in Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), World Sci. Publ., River Edge, NJ, 1995, pp. 102–115.
22.
S. N. Evans, Local fields, Gaussian measures, and Brownian motions, in Topics in Probability and Lie Groups: Boundary Theory, CRM Proc. Lecture Notes 28, Amer. Math. Soc., Providence, RI, 2001, pp. 11–50, https://doi.org/10.1090/crmp/028/02.
23.
S. N. Evans, Elementary divisors and determinants of random matrices over a local field, Stochastic Process. Appl., 102 (2002), pp. 89–102, https://doi.org/10.1016/S0304-4149(02)00187-4.
24.
S. S. Gubser, M. Heydeman, C. Jepsen, M. Marcolli, S. Parikh, I. Saberi, B. Stoica, and B. Trundy, Edge length dynamics on graphs with applications to -adic AdS/CFT, J. High Energy Phys., 2017 (2017), 157, https://doi.org/10.1007/JHEP06(2017)157.
25.
S. S. Gubser, J. Knaute, S. Parikh, A. Samberg, and P. Witaszczyk, \(p\)-adic AdS/CFT, Comm. Math. Phys., 352 (2017), pp. 1019–1059, https://doi.org/10.1007/s00220-016-2813-6.
26.
J. Harris, Algebraic Geometry, Grad. Texts in Math. 133, A first course, corrected reprint of the 1992 original, Springer-Verlag, New York, 1995, https://doi.org/10.1007/978-1-4757-2189-8.
27.
H. Hasse, Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen, J. Reine Angew. Math., 152 (1923), pp. 129–148, https://doi.org/10.1515/crll.1923.152.129.
28.
H. Hasse, Darstellbarkeit von zahlen durch quadratische formen in einem beliebigen algebraischen zahlkörper, J. Reine Angew. Math., 153 (1924), pp. 113–130, http://eudml.org/doc/149539.
29.
P. A. Helminck, Tropical Igusa Invariants, preprint, https://arxiv.org/abs/1604.03987, 2021.
30.
P. A. Helminck, Y. El Maazouz, and E. Kaya, Tropical invariants for binary quintics and reduction types of Picard curves, Glasg. Math. J., 66 (2024), pp. 65–87, https://doi.org/10.1017/S0017089523000344.
31.
K. Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 6 (1897), pp. 83–88, https://eudml.org/doc/144593.
32.
M. Heydeman, M. Marcolli, S. Parikh, and I. Saberi, Nonarchimedean holographic entropy from networks of perfect tensors, Adv. Theor. Math. Phys., 25 (2021), pp. 591–721, https://doi.org/10.4310/ATMP.2021.v25.n3.a2.
33.
K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc., 16 (2001), pp. 323–338.
34.
A. Kulkarni and A. Lerario, \(p\)-adic integral geometry, SIAM J. Appl. Algebra Geom., 5 (2021), pp. 28–59, https://doi.org/10.1137/19M1284737.
35.
A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982), pp. 515–534, https://doi.org/10.1007/BF01457454.
36.
J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics, Springer-Verlag, New York, 2001.
37.
J. S. Milne, Algebraic Groups, The Theory of Group Schemes of Finite Type over a Field, Cambridge Stud. Adv. Math. 170, Cambridge University Press, Cambridge, 2017, https://doi.org/10.1017/9781316711736.
38.
H. Minkowski, Geometrie der Zahlen. Bibliotheca Mathematica Teubneriana, Band 40, Johnson Reprint Corp., New York, London, 1968.
39.
J. Neukirch, Algebraic Number Theory, Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder, Grundlehren Math. Wiss. 322, Springer-Verlag, Berlin, 1999, https://doi.org/10.1007/978-3-662-03983-0.
40.
M. Popa, Chapter 3: \(p\)-adic integration, https://people.math.harvard.edu/∼mpopa/571/.
41.
P. Schneider, \(p\)-adic Lie groups, Grundlehren Math. Wiss. 344, Springer, Heidelberg, 2011, https://doi.org/10.1007/978-3-642-21147-8.
42.
J.-P. Serre, Local Fields, translated from the French by Marvin Jay Greenberg, Grad. Texts in Math. 67, Springer-Verlag, New York, Berlin, 1979, https://doi.org/10.1007/978-1-4757-5673-9.
43.
J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 5 (1981), pp. 323–401.
44.
J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Grad. Texts in Math. 106, Springer, Dordrecht, 2009, https://doi.org/10.1007/978-0-387-09494-6.
45.
A. V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion, Math. Comp., 81 (2012), pp. 1131–1147, https://doi.org/10.1090/S0025-5718-2011-02538-X.
46.
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.5), 2022, https://www.sagemath.org.
47.
G. van der Geer, Hilbert Modular Surfaces, Ergeb. Math. Grenzgeb. (3) 16, Springer-Verlag, Berlin, 1988, https://doi.org/10.1007/978-3-642-61553-5.
48.
A. C. M. van Rooij, Non-Archimedean Functional Analysis, Monogr. Textbooks Pure Appl. Math. 51, Marcel Dekker, New York, 1978.
49.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, \(p\)-adic Analysis and Mathematical Physics, Ser. Soviet East European Math. 1, World Scientific Publishing, River Edge, NJ, 1994, https://doi.org/10.1142/1581.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 343 - 373
ISSN (online): 2470-6566

History

Submitted: 7 February 2024
Accepted: 19 February 2025
Published online: 14 May 2025

Keywords

  1. \(p\)-adic manifolds
  2. sampling
  3. integration
  4. integral geometry
  5. probability

MSC codes

  1. 28A75
  2. 62D05
  3. 11F85
  4. 11S80

Authors

Affiliations

UC Berkeley, Berkeley, CA 94720-3860 USA.
KU Leuven, Department of Mathematics, Celestijnenlaan 200B, Leuven, B-3001, Belgium.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media