Abstract

The time evolution of the influenza A virus is linked to a nonfixed landscape driven by interactions between hosts and competing influenza strains. Herd-immunity, cross-immunity, and age-structure are among the factors that have been shown to support strain coexistence and/or disease oscillations. In this study, we put two influenza strains under various levels of (interference) competition. We establish that cross-immunity and host isolation lead to periodic epidemic outbreaks (sustained oscillations) in this multistrain system. We compute the isolation reproductive number for each strain ($\Re_i$) independently, as well as for the full system ($\Re_q$), and show that when $\Re_q < 1$, both strains die out. Subthreshold coexistence driven by cross-immunity is possible even when the isolation reproductive number of one strain is below 1. Conditions that guarantee a winning type or coexistence are established in general. Oscillatory coexistence is established via Hopf bifurcation theory and confirmed via numerical simulations.

MSC codes

  1. 92D30
  2. 92D25
  3. 34C25
  4. 34C60

Keywords

  1. influenza
  2. multiple strains
  3. cross-immunity
  4. isolation
  5. stability
  6. bifurcation
  7. oscillations
  8. coexistence

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
V. Andreasen, J. Lin, and S. A. Levin, The dynamics of co‐circulating influenza strains conferring partial cross‐ immunity, J. Math. Biol., 35 (1997), pp. 825–842.
2.
azcentral.com, Flu Is Confirmed in All 50 States; Vaccine Dwindles, http://www.azcentral.com/news/articles/1213flu‐outbreak13.html (2003).
3.
D. A. Buonagurio, S. Nakada, J. D. Parvin, M. Krystal, P. Palese, and W. M. Fitch, Evolution of human influenza A viruses over 50 years: Rapid, uniform rate of change in NS gene, Science, 232 (1986), pp. 980–982.
4.
H.‐J. Bremermann, H. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol., 27 (1989), 179–190
5.
Carlos Castillo‐Chavez, Herbert Hethcote, Viggo Andreasen, Simon Levin, Wei Liu, Cross‐immunity in the dynamics of homogeneous and heterogeneous populations, World Sci. Publishing, Teaneck, NJ, 1988, 303–316
6.
C. Castillo‐Chavez, H. Hethcote, V. Andreasen, S. Levin, Wei Liu, Epidemiological models with age structure, proportionate mixing, and cross‐immunity, J. Math. Biol., 27 (1989), 233–258
7.
C. Castillo‐Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1: Theory of Epidemics, O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, eds., Wuerz, Winnepeg, ON, Canada, 1995, pp. 33–50.
8.
C. Castillo‐Chavez, C. W. Castillo‐Garsow, and A. A. Yakubu, Mathematical models of isolation and quarantine, JAMA, 290 (2003), pp. 2876–2877.
9.
CDC (Centers for Disease Control), The Influenza (Flu) Viruses, http://www.cdc.gov/ncidod/diseases/flu/viruses.htm (2003).
10.
G. Chowell, P. Fenimore, M. Castillo‐Garsow, C. Castillo‐Chavez, SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a controlmechanism, J. Theoret. Biol., 224 (2003), 1–8
11.
R. B. Couch and J. A. Kasel, Immunity to influenza in man, Ann. Rev. Micro., 31 (1983), pp. 529–549.
12.
J. Dawes, J. Gog, The onset of oscillatory dynamics in models of multiple disease strains, J. Math. Biol., 45 (2002), 471–510
13.
K. Dietz, Epidemiologic interference of virus population, J. Math. Biol., 8 (1979), 291–300
14.
Z. Feng, Multi‐Annual Outbreaks of Childhood Diseases Revisited the Impact of Isolation, Ph.D. thesis, Arizona State University, Tempe, AZ, 1994.
15.
Zhilan Feng, Horst Thieme, Recurrent outbreaks of childhood diseases revisited: the impact of isolation, Math. Biosci., 128 (1995), 93–130
16.
W. M. Fitch, R. M. Bush, C. A. Bender, and N. J. Cox, Long term trends in the evolution of H(3) HA1 human influenza type A, Proc. Nat. Acad. Sci. U.S.A., 94 (1997), pp. 7712–7718.
17.
J. P. Fox, C. E. Hall, M. K. Cooney, and H. M. Foy, Influenza virus infections in Seattle families, 1975–1979, Amer. J. of Epidemiology, 116 (1982), pp. 212–227.
18.
Herbert Hethcote, Simon Levin, Periodicity in epidemiological models, Biomathematics, Vol. 18, Springer, Berlin, 1989, 193–211
19.
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), pp. 599–653.
20.
Herbert Hethcote, Ma Zhien, Liao Shengbing, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180 (2002), 141–160, John A. Jacquez memorial volume
21.
Mark Holmes, Introduction to perturbation methods, Texts in Applied Mathematics, Vol. 20, Springer‐Verlag, 1995ix+337
22.
R. E. Hope‐Simpson, Epidemic mechanisms of Type A influenza, J. Hyg. Camb., 83 (1979), pp. 11–26.
23.
Tosio Kato, Perturbation theory for linear operators, Springer‐Verlag, 1976xxi+619, Grundlehren der Mathematischen Wissenschaften, Band 132
24.
R. M. Krug, The Influenza Viruses, Plenum Press, New York, 1989.
25.
Simon Levin, Carlos Castillo‐Chavez, Topics in evolutionary ecology, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 299, Kluwer Acad. Publ., Dordrecht, 1990, 327–358
26.
Juan Lin, Viggo Andreasen, Simon Levin, Dynamics of influenza A drift: the linear three‐strain model, Math. Biosci., 162 (1999), 33–51
27.
L. H. Taber, A. Paredes, W. P. Glezen, and R. B. Couch, Infection with influenza A/Victoria virus in Houston families, 1976, J. Hyg. Cam., 86 (1981), pp. 303–313.
28.
S. B. Thacker, The persistence of influenza in human populations, Epidemi. Rev., 8 (1986), pp. 129–142.
29.
R. G. Webster, W. J. Beam, O. T. Gorman, T. M. Chambers, and Y. Kawaoka, Evolution and ecology of influenza A viruses, Micro. Biol. Rev., 56 (1992), pp. 152–179.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 964 - 982
ISSN (online): 1095-712X

History

Published online: 31 July 2006

MSC codes

  1. 92D30
  2. 92D25
  3. 34C25
  4. 34C60

Keywords

  1. influenza
  2. multiple strains
  3. cross-immunity
  4. isolation
  5. stability
  6. bifurcation
  7. oscillations
  8. coexistence

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media