Abstract

We examine a model for non-Fickian “sorption overshoot” behavior in diffusive polymer-penetrant systems. The equations of motion proposed by Cohen and White [SIAM J. Appl. Math., 51 (1991), pp. 472–483] are solved for two-dimensional problems using matched asymptotic expansions. The phenomenon of shock formation predicted by the model is examined and contrasted with similar behavior in classical reaction-diffusion systems. Mass uptake curves produced by the model are examined and shown to compare favorably with experimental observations.

MSC codes

  1. 35K57
  2. 35K60
  3. 35K22
  4. 35C20
  5. 73F15

Keywords

  1. viscoelastic diffusion
  2. shocks
  3. reaction-diffusion

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Herbert Amann, H. Triebel, H. J. Schmeiszer, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problemsFunction spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., Vol. 133, Teubner, Stuttgart, 1993, 9–126
2.
Herbert Amann, Highly degenerate quasilinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18 (1991), 135–166
3.
D. S. Cohen, A. B. White, Jr., Sharp fronts due to diffusion and stress at the glass transition in polymers, J. Polymer Sci. B: Polymer Physics, 27 (1989), 1731–1747
4.
Donald S. Cohen, Andrew B. White, Jr., Sharp fronts due to diffusion and viscoelastic relaxation in polymers, SIAM J. Appl. Math., 51 (1991), 472–483
5.
J. Crank, The mathematics of diffusion, Clarendon Press, Oxford, 1975ix+414, 2nd ed.
6.
J. Crank, G. S. Park, Diffusion in Polymers, Academic Press, London, 1968
7.
C. J. Durning, Differential sorption in viscoelastic-fluids, J. Polymer Sci. B: Polymer Physics, 23 (1985), 1831–1855
8.
C. K. Hayes, D. S. Cohen, The evolution of steep fronts in non-Fickian polymer-penetrant systems, J. Polymer Sci. B: Polymer Physics, 30 (1992), 145–161
9.
C. K. Hayes, D. S. Cohen, Ph.D. Thesis, Diffusion and Stress Driven Flow in Polymers, California Institute of Technology, 1990
10.
R. W. Cox, D. S. Cohen, A mathematical model for stress-driven diffusion in polymers, J. Polymer Sci. B: Polymer Physics, 27 (1989), 589–602
11.
R. W. Cox, Ph.D. Thesis, A model for stress-driven diffusion in polymers, California Institute of Technology, 1988
12.
Robert W. Cox, Shocks in a model for stress-driven diffusion, SIAM J. Appl. Math., 50 (1990), 1284–1299
13.
H. L. Frisch, Sorption and transport in glassy polymers—a review, Polymer Engr. and Sci., 20 (1980), 2–13
14.
T. L. Smith, R. E. Adam, Effect of tensile deformations on gas transport in glassy polymer films, Polymer, 22 (1981), 299–304
15.
D. A. Edwards, Ph.D. Thesis, Heavily stressed polymer-penetrant system exhibiting two fronts, California Institute of Technology, 1994
16.
C. J. Durning, D. S. Cohen, D. A. Edwards, Perturbation analysis of Thomas' and Windle's model of Case II diffusion, to appear
17.
Paul C. Fife, R. E. O'Malley, Jr., Singular perturbation and wave front techniques in reaction-diffusion problemsAsymptotic methods and singular perturbations (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1976), Amer. Math. Soc., Providence, R.I., 1976, 23–50. SIAM-AMS Proceedings, Vol. X
18.
Paul C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988vi+93
19.
Wilhelm Flügge, Viscoelasticity, Springer-Verlag, New York, 1975vii+194, Berlin
20.
W. G. Knauss, V. H. Kenner, On the hygrothermomechanical characterization of polyvinyl acetate, J. Appl. Physics, 51 (1980), 5131–5136
21.
N. L. Thomas, A. H. Windle, A theory of case II diffusion, Polymer, 23 (1982), 529–542
22.
J. S. Vrentas, J. L. Duda, A. C. Hou, Anomalous sorption in poly(ethyl methacrylate), J. Appl. Polymer Sci., 29 (1984), 399–406

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 348 - 368
ISSN (online): 1095-712X

History

Submitted: 26 June 1993
Accepted: 27 May 1994
Published online: 5 July 2006

MSC codes

  1. 35K57
  2. 35K60
  3. 35K22
  4. 35C20
  5. 73F15

Keywords

  1. viscoelastic diffusion
  2. shocks
  3. reaction-diffusion

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media