Abstract

In this paper we give an extension of the Birkhoff--Lewis theorem to some semilinear PDEs. Accordingly we prove existence of infinitely many periodic orbits with large period accumulating at the origin. Such periodic orbits bifurcate from resonant finite dimensional invariant tori of the fourth order normal form of the system. Besides standard nonresonance and nondegeneracy assumptions, our main result is obtained assuming a regularizing property of the nonlinearity. We apply our main theorem to a semilinear beam equation and to a nonlinear Schrödinger equation with smoothing nonlinearity.

MSC codes

  1. 35B10
  2. 37K50
  3. 37K55
  4. 58E30

Keywords

  1. infinite dimensional Hamiltonian systems
  2. periodic solutions
  3. Birkhoff normal form
  4. variational methods
  5. perturbation theory

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Ambrosetti, V. Coti Zelati, I. Ekeland, Symmetry breaking in Hamiltonian systems, J. Differential Equations, 67 (1987), 165–184
2.
Dario Bambusi, Lyapunov center theorem for some nonlinear PDE’s: a simple proof, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 823–837
3.
Dario Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234 (2003), 253–285
4.
Dario Bambusi, Benoît Grébert, Forme normale pour NLS en dimension quelconque, C. R. Math. Acad. Sci. Paris, 337 (2003), 409–414
5.
D. Bambusi, S. Paleari, Families of periodic solutions of resonant PDEs, J. Nonlinear Sci., 11 (2001), 69–87
6.
Massimiliano Berti, Luca Biasco, Enrico Valdinoci, Periodic orbits close to elliptic tori and applications to the three‐body problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3 (2004), 87–138
7.
Massimiliano Berti, Philippe Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243 (2003), 315–328
8.
Massimiliano Berti, Philippe Bolle, Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal., 56 (2004), 1011–1046
9.
G. D. Birkhoff and D. C. Lewis, On the periodic motions near a given periodic motion of a dynamical system, Ann. Mat. Pura Appl., (4), 12 (1933), pp. 117–133.
10.
J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629–639
11.
Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, 1983xiv+234, Théorie et applications. [Theory and applications]
12.
Walter Craig, C. Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409–1498
13.
Jiansheng Geng, Jiangong You, KAM tori of Hamiltonian perturbations of 1D linear beam equations, J. Math. Anal. Appl., 277 (2003), 104–121
14.
Sergej Kuksin, Nearly integrable infinite‐dimensional Hamiltonian systems, Lecture Notes in Mathematics, Vol. 1556, Springer‐Verlag, 1993xxviii+101
15.
Sergej Kuksin, Jürgen Pöschel, Invariant Cantor manifolds of quasi‐periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (2), 143 (1996), 149–179
16.
D. C. Lewis, Sulle oscillazioni periodiche d’un sistema dinamico, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (1934), pp. 234–237.
17.
J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, Springer, Berlin, 1977, 0–0, 464–494. Lecture Notes in Math., Vol. 597
18.
Jürgen Pöschel, A KAM‐theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 119–148
19.
Jürgen Pöschel, Quasi‐periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269–296
20.
Jürgen Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 22 (2002), 1537–1549
21.
C. Wayne, Periodic and quasi‐periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479–528

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 83 - 102
ISSN (online): 1095-7154

History

Published online: 1 August 2006

MSC codes

  1. 35B10
  2. 37K50
  3. 37K55
  4. 58E30

Keywords

  1. infinite dimensional Hamiltonian systems
  2. periodic solutions
  3. Birkhoff normal form
  4. variational methods
  5. perturbation theory

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media