Abstract

A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of nonvariational and nonconvergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that the absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.

MSC codes

  1. 65N55
  2. 65N22
  3. 65F10
  4. 65J10

Keywords

  1. multigrid
  2. domain decomposition
  3. Krylov methods
  4. Schwarz methods
  5. conjugate gradients
  6. Bi-CGstab

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Ashby, M. Holst, T. Manteuffel, and P. Saylor. The role of the inner product in stopping criteria for conjugate gradient iterations. Technical Report UCRL‐JC‐112586, Lawrence Livermore National Laboratory, 1992.
2.
Steven Ashby, Thomas Manteuffel, Paul Saylor, A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), 1542–1568
3.
Randolph Bank, Mohamed Benbourenane, The hierarchical basis multigrid method for convection‐diffusion equations, Numer. Math., 61 (1992), 7–37
4.
James Bramble, Joseph Pasciak, Jun Wang, Jinchao Xu, Convergence estimates for multigrid algorithms without regularity assumptions, Math. Comp., 57 (1991), 23–45
5.
James Bramble, Joseph Pasciak, Jun Wang, Jinchao Xu, Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57 (1991), 1–21
6.
A. Brandt. Multi‐level adaptive solutions to boundary‐value problems. Math. Comp., 31, 333–390, 1977.
7.
J. M. Briggs and J. A. McCammon. Computation unravels mysteries of molecular biophysics. Computers in Physics, 6(3):238–243, 1990.
8.
P. Concus, G. H. Golub, and D. P. O’Leary. A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. In J. R. Bunch and D. J. Rose, editors, Sparse Matrix Computations, pages 309–332. Academic Press, New York, NY, 1976.
9.
, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Proceedings of the symposium held in Houston, Texas, March 20–22, 1989, Society for Industrial and Applied Mathematics (SIAM), 1990, 0–0, xx+491
10.
R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR Comput. Math. and Math. Phys., 1(5):1092–1096, 1961.
11.
W. Hackbusch. Multi‐grid Methods and Applications. Springer‐Verlag, Berlin, Germany, 1985.
12.
Wolfgang Hackbusch, Iterative solution of large sparse systems of equations, Applied Mathematical Sciences, Vol. 95, Springer‐Verlag, 1994xxii+429, Translated and revised from the 1991 German original
13.
Magnus Hestenes, Eduard Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409–436
14.
M. Holst. An Algebraic Schwarz Theory. Technical Report CRPC‐94‐12, Applied Mathematics and CRPC, California Institute of Technology, 1994.
15.
M. Holst and F. Saied. Multigrid and domain decomposition methods for electrostatics problems. In D. E. Keyes and J. Xu, editors, Domain Decomposition Methods in Science and Engineering (Proceedings of the Seventh International Conference on Domain Decomposition, October 27–30, 1993, The Pennsylvania State University). American Mathematical Society, Providence, 1995.
16.
, Domain decomposition methods in science and engineering, Proceedings of the Sixth International Conference on Domain Decomposition held in Como, June 15–19, 1992, Contemporary Mathematics, Vol. 157, American Mathematical Society, 1994, 0–0, xxii+484
17.
R. Kress. Linear Integral Equations. Springer‐Verlag, Berlin, Germany, 1989.
18.
Erwin Kreyszig, Introductory functional analysis with applications, Wiley Classics Library, John Wiley & Sons Inc., 1989xvi+688
19.
S. McCormick, J. Ruge, Unigrid for multigrid simulation, Math. Comp., 41 (1983), 43–62
20.
J. M. Ortega. Numerical Analysis: A Second Course. Academic Press, New York, NY, 1972.
21.
Youcef Saad, Martin Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869
22.
H. A. Schwarz. Über einige Abbildungsaufgaben. Ges. Math. Abh., 11:65–83, 1869.
23.
Peter Sonneveld, CGS, a fast Lanczos‐type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10 (1989), 36–52
24.
E. F. Van de Velde. Domain decomposition vs. concurrent multigrid. Technical Report CRPC‐94‐11, Applied Mathematics and CRPC, California Institute of Technology, 1994.
25.
H. van der Vorst, Bi‐CGSTAB: a fast and smoothly converging variant of Bi‐CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), 631–644
26.
Folkmar Bornemann, Harry Yserentant, A basic norm equivalence for the theory of multilevel methods, Numer. Math., 64 (1993), 455–476
27.
Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), 581–613
28.
Harry Yserentant, Two preconditioners based on the multi‐level splitting of finite element spaces, Numer. Math., 58 (1990), 163–184

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 699 - 722
ISSN (online): 1095-7170

History

Published online: 25 July 2006

MSC codes

  1. 65N55
  2. 65N22
  3. 65F10
  4. 65J10

Keywords

  1. multigrid
  2. domain decomposition
  3. Krylov methods
  4. Schwarz methods
  5. conjugate gradients
  6. Bi-CGstab

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media