Abstract

This paper presents the Cholesky factor--alternating direction implicit (CF--ADI) algorithm, which generates a low-rank approximation to the solution X of the Lyapunov equation AX+XAT = -BBT. The coefficient matrix A is assumed to be large, and the rank of the right-hand side -BBT is assumed to be much smaller than the size of A. The CF--ADI algorithm requires only matrix-vector products and matrix-vector solves by shifts of A. Hence, it enables one to take advantage of any sparsity or structure in A.
This paper also discusses the approximation of the dominant invariant subspace of the solution X. We characterize a group of spanning sets for the range of X. A connection is made between the approximation of the dominant invariant subspace of X and the generation of various low-order Krylov and rational Krylov subspaces. It is shown by numerical examples that the rational Krylov subspace generated by the CF--ADI algorithm, where the shifts are obtained as the solution of a rational minimax problem, often gives the best approximation to the dominant invariant subspace of X.

MSC codes

  1. 65F30
  2. 65F10
  3. 15A24
  4. 93C05

Keywords

  1. Lyapunov equation
  2. alternating direction implicit iteration
  3. low-rank approximation
  4. dominant invariant subspace
  5. iterative methods

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Antoulas, D. Sorensen, and Y. Zhou, On the Decay Rate of Hankel Singular Values and Related Issues, Technical report, Department of Computational and Applied Mathematics, Rice University, Houston, TX, 2001.
2.
R. H. Bartels and W. Stewart, Solution of the matrix equation AX+XB=C, Comm. ACM, 15 (1972), pp. 820–826.
3.
A. N. Beavers, Jr. and E. D. Denman, A new solution method for the Lyapunov matrix equation, SIAM J. Appl. Math., 29 (1975), pp. 416–421.
4.
P. Benner and E. S. Quintana‐Ortí, Solving stable generalized Lyapunov equations with the matrix sign function, Numer. Algorithms, 20 (1999), pp. 75–100.
5.
G. Birkhoff, R. S. Varga, and D. Young, Alternating direction implicit methods, in Advances in Computers, Vol. 3, Academic Press, New York, 1962, pp. 189–273.
6.
P. C. Chandrasekharan, Robust Control of Linear Dynamical Systems, Harcourt Brace, London, San Diego, CA, 1996.
7.
I. Elfadel and D. Ling, A block rational Arnoldi algorithm for multipoint passive model‐order reduction of multiport RLC networks, in Proceedings of the International Conference on Computer‐Aided Design, San Jose, CA, 1997, pp. 66–71.
8.
N. S. Ellner and E. L. Wachspress, Alternating direction implicit iteration for systems with complex spectra, SIAM J. Numer. Anal., 28 (1991), pp. 859–870.
9.
K. Glover, All optimal Hankel‐norm approximations of linear multivariable systems and their L‐error bounds, Internat. J. Control, 39 (1984), pp. 1115–1193.
10.
Vassil Alexandrov, Bo Liu, Hybrid Monte Carlo methods for matrix computation, Lecture Notes in Comput. Sci., Vol. 2542, Springer, Berlin, 2003, 73–82
11.
E. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. thesis, University of Illinois at Urbana‐Champaign, 1997.
12.
S. J. Hammarling, Numerical solution of the stable, nonnegative definite Lyapunov equation, IMA J. Numer. Anal., 2 (1982), pp. 303–323.
13.
A. S. Hodel, B. Tenison, and K. R. Poolla, Numerical solution of the Lyapunov equation by approximate power iteration, Linear Algebra Appl., 236 (1996), pp. 205–230.
14.
D. Y. Hu and L. Reichel, Krylov‐subspace methods for the Sylvester equation, Linear Algebra Appl., 172 (1992), pp. 283–313.
15.
M.‐P. Istace and J.‐P. Thiran, On the third and fourth Zolotarev problems in the complex plane, SIAM J. Numer. Anal., 32 (1995), pp. 249–259.
16.
I. M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227–251.
17.
M. Kamon, F. Wang, and J. White, Recent improvements for fast inductance extraction and simulation [packaging], in Proceedings of the 7th IEEE Topical Meeting on Electrical Performance of Electronic Packaging, West Point, NY, 1998, pp. 281–284.
18.
P. Lancaster, Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970), pp. 544–566.
19.
V. B. Larin and F. A. Aliev, Construction of square root factor for solution of the Lyapunov matrix equation, Systems Control Lett., 20 (1993), pp. 109–112.
20.
J.‐R. Li, F. Wang, and J. White, An efficient Lyapunov equation‐based approach for generating reduced‐order models of interconnect, in Proceedings of the 36th Design Automation Conference, New Orleans, LA, 1999, pp. 1–6.
21.
J.‐R. Li and J. White, Efficient model reduction of interconnect via approximate system Gramians, in Proceedings of the IEEE/ACM International Conference on Computer‐Aided Design, San Jose, CA, 1999, pp. 380–383.
22.
Jing‐Rebecca Li, Jacob White, Reduction of large circuit models via low rank approximate Gramians, Int. J. Appl. Math. Comput. Sci., 11 (2001), 1151–1171, Numerical analysis and systems theory (Perpignan, 2000)
23.
An Lu, E. Wachspress, Solution of Lyapunov equations by alternating direction implicit iteration, Comput. Math. Appl., 21 (1991), 43–58
24.
N. Marques, M. Kamon, J. White, and L. Silveira, A mixed nodal‐mesh formulation for efficient extraction and passive reduced‐order modeling of 3D interconnects, in Proceedings of the 35th ACM/IEEE Design Automation Conference, San Francisco, CA, June 1998, pp. 297–302.
25.
L. Miguel Silveira, M. Kamon, I. Elfadel, and J. White, A coordinate‐transformed Arnoldi algorithm for generating guaranteed stable reduced‐order models of RLC circuits, in Proceedings of the IEEE/ACM International Conference on Computer‐Aided Design, San Jose, CA, 1996, pp. 288–294.
26.
B. C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17–32.
27.
T. Penzl, A cyclic low‐rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21 (2000), pp. 1401–1418.
28.
T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case, Systems Control Lett., 40 (2000), pp. 139–144.
29.
L. Pernebo and L. M. Silverman, Model reduction via balanced state space representations, IEEE Trans. Automat. Control, 27 (1982), pp. 382–387.
30.
J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control, 32 (1980), pp. 677–687.
31.
A. Ruhe, The rational Krylov algorithm for nonsymmetric eigenvalue problems. III. Complex shifts for real matrices, BIT, 34 (1994), pp. 165–176.
32.
M. G. Safonov and R. Y. Chiang, A Schur method for balanced‐truncation model reduction, IEEE Trans. Automat. Control, 34 (1989), pp. 729–733.
33.
E. D. Sontag, Mathematical Control Theory, 2nd ed., Springer‐Verlag, New York, 1998.
34.
G. Starke, Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431–1445.
35.
G. Starke, Fejér‐Walsh points for rational functions and their use in the ADI iterative method, J. Comput. Appl. Math., 46 (1993), pp. 129–141.
36.
M. Tombs, I. Postlethwaite, Truncated balanced realization of a stable nonminimal state‐space system, Internat. J. Control, 46 (1987), 1319–1330
37.
E. L. Wachspress, Optimum alternating‐direction‐implicit iteration parameters for a model problem, J. Soc. Indust. Appl. Math., 10 (1962), pp. 339–350.
38.
Eugene Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988), 87–90
39.
Eugene Wachspress, ADI iterative solution of Lyapunov equations, North‐Holland, Amsterdam, 1992, 229–231
40.
E. L. Wachspress, The ADI Model Problem, self‐published, Windsor, CA, 1995.
41.
O. B. Widlund, On the rate of convergence of an alternating direction implicit method in a noncommutative case, Math. Comp., 20 (1966), pp. 500–515.
42.
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford Sci. Publ., Oxford University Press, New York, 1988.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 693 - 713
ISSN (online): 1095-7200

History

Published online: 4 August 2006

MSC codes

  1. 65F30
  2. 65F10
  3. 15A24
  4. 93C05

Keywords

  1. Lyapunov equation
  2. alternating direction implicit iteration
  3. low-rank approximation
  4. dominant invariant subspace
  5. iterative methods

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media