Abstract

In the field of radiation therapy, much of the research is aimed at developing new and innovative techniques for treating cancer patients with radiation. In recent years, new treatment machines have been developed that provide a much greater degree of computer control than was available with the machines of previous generations. One innovation has been the development of an approach called "tomotherapy.' Tomotherapy can be defined as computer-controlled rotational radiotherapy delivered using an intensity-modulated fan beam of radiation.
The successful implementation of the new delivery techniques requires the development of a suitable approach for optimizing each patient's treatment plan. One of the challenges is to quantify optimality in radiation therapy. We have tested a variety of objective functions and constraints in pursuit of a formulation that performs well for a wide variety of disease sites. An additional challenge stems from the sizable amount of data and the large number of variables that are involved in each optimization. This paper presents several approaches to optimizing treatment plans in radiation therapy, and the advantages and disadvantages of a number of formulations are explored.

MSC codes

  1. 90C50
  2. 90C11
  3. 90C30

Keywords

  1. optimization
  2. radiation therapy
  3. mathematical programming
  4. cancer
  5. treatment plans

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Balog, L. Angelos, T. R. Mackie, and P. Reckwerdt, Dose computation for a onedimensional multileaf collimator, in Proceedings of the XII International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, D. D. Leavitt and G. Starkshall, eds., Medical Physics Publishing, St. Louis, MO, 1997, pp. 323–326.
2.
T. Bortfeld and W. Schlegel, Optimization of beam orientations in radiation therapy: Some theoretical considerations, Phys. Med. Biol., 38 (1993), pp. 291–304.
3.
T. R. Bortfeld, D. L. Kahler, T. J. Waldron, and A. L. Boyer, X‐ray field compensation with multileaf collimators, Internat. J. Radiation Oncology Biol. Phys., 28 (1994), pp. 723–730.
4.
A. L. Boyer, Present and future developments in radiotherapy treatment units, Seminars in Radiation Oncology, 5 (1995), pp. 146–155.
5.
A. Brahme, Optimization of stationary and moving beam radiation therapy techniques, Radiother. Oncology, 12 (1988), pp. 129–140.
6.
A. Brahme, Optimization of radiation therapy and the development of multileaf collimation, Internat. J. Radiation Oncology Biol. Phys., 25 (1993), pp. 373–375.
7.
A. Brahme, Treatment optimization: Using physical and radiobiological objective functions, in Radiation Therapy Physics, A. R. Smith, ed., Springer‐Verlag, Berlin, 1995, pp. 209–246.
8.
L. Brewster, R. Mohan, G. Mageras, C. Burman, S. Leibel, and Z. Fuks, Three dimensional conformal treatment planning with multileaf collimators, Internat. J. Radiation Oncology Biol. Phys., 33 (1995), pp. 1081–1089.
9.
A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User's Guide, The Scientific Press, South San Francisco, CA, 1988.
10.
C. Burman, G. J. Kutcher, B. Emami, and M. Goitein, Fitting of normal tissue tolerance data to an analytical function, Internat. J. Radiation Oncology Biol. Phys., 21 (1991), pp. 123–135.
11.
M. Carol, W. H. Grant, D. Pavord, P. Eddy, H. S. Targovnik, B. Butler, S. Woo, J. Figura, V. Onufrey, R. Grossman, and R. Selkar, Initial clinical experience with the Peacock intensity modulation of a 3‐D conformal radiation therapy system, Stereotactic and Functional Neurosurgery, 66 (1996), pp. 30–34.
12.
P. S. Cho, S. Lee, R. J. Marks, S. Oh, S. Sutlief, and H. Phillips, Optimization of intensity modulated beams with volume constraints using two methods: Cost function minimization and projection onto convex sets, Med. Phys., 25 (1998), pp. 435–443.
13.
V. Chvátal, Linear Programming, W. H. Freeman, New York, 1983.
14.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: A Fortran package for Large– Scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math. 17, Springer‐Verlag, Heidelberg, Berlin, 1992.
15.
R. E. M. Cooper, A gradient method of optimizing external‐beam radiotherapy treatment plans, Radiology, 128 (1978), pp. 235–243.
16.
A. M. Cormack, A problem in rotation therapy with x‐rays, Internat. J. Radiation Oncology Biol. Phys., 13 (1987), pp. 623–630.
17.
A. M. Cormack, A problem in rotation therapy with x‐rays 2: Dose distributions with an axis of symmetry, Internat. J. Radiation Oncology Biol. Phys., 13 (1987), pp. 1921–1925.
18.
G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
19.
J. O. Deasy, Multiple local minima in radiotherapy optimization problems with dose volume constraints, Medical Physics, 1997.
20.
B. G. Fallone and D. H. Hristov, A continuous penalty function method for inverse treatment planning, Med. Phys., 25 (1998), pp. 208–223.
21.
A. Drud, CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems, Math. Programming, 31 (1985), pp. 153–191.
22.
M. N. Du, C. X. Yu, M. Symons, D. Yan, R. Taylor, R. C. Matter, G. Gustafson, A. Martinez, and J. W. Wong, A multileaf collimator field prescription preparation system for conventional radiotherapy, Internat. J. Radiation Oncology Biol. Phys., 30 (1994), pp. 707–714.
23.
G. Fang, B. Geiser, and T. R. Mackie, Software system for uw/ge tomotherapy prototype, in Proceedings of the XII International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, Medical Physics Publishing, St. Louis, MO, 1997, pp. 332–334.
24.
M. C. Ferris, MATLAB and GAMS: Interfacing Optimization and Visualization Software, Mathematical Programming Technical Report 98‐19, Computer Sciences Department, University of Wisconsin, Madison, 1998.
25.
E. E. Fitchard, J. S. Aldridge, P. J. Reckwerdt, and T. R. Mackie, Registration of synthetic tomographic projection data sets using cross‐correlation, Phys. Med. Biol., 43 (1998), pp. 1645–1657.
26.
A. Fraass, The development of conformal radiation therapy, Med. Phys., 22 (1995), pp. 1911– 1921.
27.
P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London, 1981.
28.
W. I. Grant and S. Y. Woo, Clinical and financial issues for intensity modulated radiation therapy delivery, Seminars in Radiation Oncology, 9 (1999), pp. 99–107.
29.
A. Gustafsson, B. K. Lind, R. Svensson, and A. Brahme, Simultaneous optimization of dynamic multileaf collimation and scanning patterns or compensation filters using a generalized pencil beam algorithm, Med. Phys., 22 (1995), pp. 1141–1156.
30.
T. Holmes and T. R. Mackie, A comparison of three inverse treatment planning algorithms, Phys. Med. Biol., 39 (1994), pp. 91–106.
31.
T. Holmes and T. R. Mackie, A filtered backprojection dose calculation method for inverse treatment planning, Med. Phys., 21 (1994), pp. 303–313.
32.
M. S. Hung, W. O. Rom, and A. D. Warren, OSL Handbook, Boyd and Fraser, Danvers, MA, 1995.
33.
CPLEX Version 6.0, ILOG CPLEX Division, Incline Village, NV; also available online from http://www.cplex.com/.
34.
A. Jackson, G. J. Kutcher, and E. D. Yorke, A probability of radiation‐induced complications for normal tissues with parallel architecture subject to non‐uniform irradiation, Med. Phys., 20 (1993), pp. 613–625.
35.
A. Jackson, X. H. Wang, and R. Mohan, Optimization of conformal treatment planning and quadratic dose objectives (abstract), Med. Phys., 21 (1994), p. 1006.
36.
P. Kallman, A. Agren, and A. Brahme, Tumor and normal tissue responses to fractionated non‐uniform dose delivery, Internat. J. Radiation Oncology Biol. Phys., 62 (1992), pp. 249–262.
37.
G. J. Kutcher and C. Burman, Calculation of complication probability factors for nonuniform normal tissue irradiation: The effective volume method, Internat. J. Radiation Oncology Biol. Phys., 16 (1989), pp. 1623–1630.
38.
G. J. Kutcher, C. Burman, L. Brewster, M. Goitein, and R. Mohan, Histogram reduction method for calculating complication probabilities for three‐dimensional treatment planning evaluation, Internat. J. Radiation Oncology Biol. Phys., 21 (1991), pp. 137–146.
39.
M. Langer and S. Morrill, A comparison of mixed integer programming and fast simulated annealing for optimized beam weights in radiation therapy, Med. Phys., 23 (1996), pp. 957–964.
40.
D. D. Leavitt, M. Martin, J. H. Moeller, and W. L. Lee, Dynamic wedge field techniques through computer‐controlled collimator motion and dose delivery, Med. Phys., 17 (1990), pp. 87–92.
41.
S. A. Leibel, G. J. Kutcher, L. B. Harrison, D. E. Fass, C. Burman, M. Hunt, R. Mohan, L. J. Brewster, C. C. Ling, and Z. Y. Fuks, Improved dose distributions for 3d conformal boost treatments in carcinoma of the nasopharynx, Internat. J. Radiation Oncology Biol. Phys., 20 (1991), pp. 823–833.
42.
D. C. Liu and J. Nocedal, On the limited memory method for large scale optimization, Math. Programming, 45 (1989), pp. 503–528.
43.
J. Llacer, Inverse radiation treatment planning using the dynamically penalized likelihood method, Med. Phys., 24 (1997), pp. 1751–1764.
44.
J. T. Lyman and A. B. Wolbarst, Optimization of radiation therapy iv: A dose volume histogram reduction algorithm, Internat. J. Radiation Oncology Biol. Phys., 17 (1989), pp. 433–436.
45.
T. R. Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deasy, J. Yang, B. Paliwal, and T. Kinsella, Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy, Med. Phys., 20 (1993), pp. 1709–1719.
46.
T. R. Mackie, T. W. Holmes, P. J. Reckwerdt, and J. Yang, Tomotherapy: Optimized planning and delivery of radiation therapy, Int. J. Imaging Systems and Technology, 6 (1995), pp. 43–55.
47.
T. R. Mackie, J. W. Scrimger, and J. J. Batista, A convolution method of calculating dose from 15 mev x‐rays, Med. Phys., 12 (1985), pp. 188–196.
48.
MATLAB, User's Guide, The MathWorks, Natick, MA, 1992.
49.
R. Mohan, Field shaping for three‐dimensional conformal radiation therapy and multileaf collimation, Seminars in Radiation Oncology, 5 (1995), pp. 86–99.
50.
R. Mohan, G. S. Mageras, B. Baldwin, L. J. Brewster, G. J. Kutcher, S. Leibel, C. M. Burman, C. C. Ling, and Z. Fuks, Clinically relevant optimization of 3‐d conformal treatments, Med. Phys., 19 (1992), pp. 933–944.
51.
J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems with bound constraints, SIAM J. Optim., 1 (1991), pp. 93–113.
52.
J. J. Moré and S. J. Wright, Optimization Software Guide, Frontiers Appl. Math. 14, SIAM, Philadelphia, 1993.
53.
S. Morrill, R. Lane, J. Wong, and I. Rosen, Dose‐volume considerations with linear programming, Med. Phys., 18 (1991), pp. 1201–1210.
54.
S. M. Morrill, K. S. Lam, R. G. Lane, M. Langer, and I. I. Rosen, Very fast simulated annealing in radiation therapy treatment plan optimization, Int. J. Radiation Oncology Biol. Phys., 31 (1995), pp. 179–188.
55.
G. P. Murphy, W. L. Lawrence, and R. E. Lenhard, eds., American Cancer Society Textbook of Clinical Oncology, The American Cancer Society, Atlanta, GA, 1995.
56.
B. A. Murtagh and M. A. Saunders, MINOS 5.0 User's Guide, Technical Report SOL 83.20, Stanford University, Stanford, CA, 1983.
57.
K. G. Murty, Linear Programming, John Wiley, New York, 1983.
58.
S. G. Nash and J. Nocedal, A numerical study of the limited memory BFGS method and the truncated‐Newton method for large scale optimization, SIAM J. Optim., 3 (1991), pp. 358–372.
59.
J. L. Nazareth, Computer Solution of Linear Programs, Oxford University Press, Oxford, UK, 1987.
60.
A. Niemierko, Optimization of 3d radiation therapy with both physical and biological end points and constraints, Int. J. Radiation Oncology Biol. Phys., 23 (1992), pp. 99–108.
61.
A. Niemierko, Treatment plan optimization, in 3‐D Radiation Treatment Planning and Conformal Therapy, J. A. Purdy and B. Emami, eds., Medical Physics Publishing, St. Louis, MO, 1993, pp. 49–55.
62.
N. C. I. National Institutes of Health, Radiation Therapy and You—A Guide to Self‐Help During Treatment, NIH Publication 97‐2227, National Institutes of Health, Bethesda, MD, 1997.
63.
G. H. Olivera, D. M. Shepard, P. J. Reckwerdt, K. Ruchala, J. Zachman, E. E. Fitchard, and T. R. Mackie, Maximum likelihood as a common computational framework in tomotherapy, Phys. Med. Biol., 43 (1998), pp. 3277–3294.
64.
W. Orchard‐Hays, Advanced Linear Programming Computing Techniques, McGraw–Hill, New York, 1968.
65.
N. Papanikolaou, T. R. Mackie, C. Meger‐Wells, M. Gehring, and P. Reckwerdt, Investigation of the convolution method for polyenergetic spectra, Med. Phys., 20 (1993), pp. 1327–1336.
66.
C. A. Perez and L. W. Brady, Principles and Practice of Radiotherapy, 3rd ed., Lippincott‐Raven, Philadelphia, 1998.
67.
P. J. Reckwerdt, T. R. Mackie, J. P. Balog, and T. R. McNutt, Three‐dimensional inverse treatment optimization for tomotherapy, in XII International Conference on the Use of Computers in Radiation Therapy, D. D. Leavitt and G. Starkshall, eds., Salt Lake City, UT, Medical Physics Publishing, St. Louis, MO, 1997, pp. 420–422.
68.
I. Rosen, R. Lane, S. Morrill, and J. Belli, Treatment plan optimization using linear programming, Med. Phys., 18 (1990), pp. 141–152.
69.
K. J. Ruchala, G. H. Olivera, E. A. Schloesser, and T. R. Mackie, Megavoltage CT on a tomotherapy system, Phys. Med. Biol., to appear.
70.
D. M. Shepard, L. Angelos, O. A. Sauer, and T. R. Mackie, A simple model for examining radiotherapy optimization, in Proceedings of the XII International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, UT, Medical Physics Publishing, St. Louis, MO, 1997.
71.
L. J. Verhey, Immobilizing and positioning patients for radiotherapy, Seminars in Radiation Oncology, 5 (1995), pp. 100–113.
72.
S. Webb, Optimum parameters in a model of tumor control probability including interpatient heterogeneity, Phys. Med. Biol., 11 (1994), pp. 1895–1914.
73.
S. Webb, The Physics of Conformal Radiotherapy—Advances in Technology, Institute of Physics Publishing, Philadelphia, PA, 1997.
74.
S. Webb, Inverse Planning for IMRT: The Role of Simulated Annealing, The Theory and Practice of Intensity Modulated Radiation Therapy, Advanced Medical Publishing, Madison, WI, 1997.
75.
S. Y. Woo, M. Sanders, W. Grant, and E. B. Butler, Does the “peacock” have anything to do with radiotherapy?, Internat. J. Radiation Oncology Biol. Phys., 29 (1994), pp. 213–214.
76.
S. J. Wright, Primal‐Dual Interior‐Point Methods, SIAM, Philadelphia, 1996.
77.
J. N. Yang, T. R. Mackie, P. Reckwerdt, J. O. Deasy, and B. R. Thomadsen, An investigation of tomotherapy beam delivery, Med. Phys., 24 (1997), pp. 425–436.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 721 - 744
ISSN (online): 1095-7200

History

Published online: 2 August 2006

MSC codes

  1. 90C50
  2. 90C11
  3. 90C30

Keywords

  1. optimization
  2. radiation therapy
  3. mathematical programming
  4. cancer
  5. treatment plans

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media