Abstract

Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C$ defined on the set $\mathcal{B}$ of all balls $B\subset X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts in $L^{2}(X,m)$, is essentially self-adjoint, and has a purely point spectrum. Choosing a family $\{\varepsilon(B)\}_{B\in \mathcal{B}}$ of i.i.d. random variables, we define the perturbed function $\mathcal{C}(B)=C(B)(1+\varepsilon(B))$ and the perturbed hierarchical Laplacian $\mathcal{L}=L_{\mathcal{C}}$. All outcomes of the perturbed operator $\mathcal{L}$ are hierarchical Laplacians. In particular they all have purely point spectrum. We study the empirical point process $M$ defined in terms of $\mathcal{L}$-eigenvalues. Under some natural assumptions, $M$ can be approximated by a Poisson point process. Using a result of Arratia, Goldstein, and Gordon based on the Chen--Stein method, we provide total variation convergence rates for the Poisson approximation. We apply our theory to random perturbations of the operator $\mathfrak{D}^{\alpha }$, the $p$-adic fractional derivative of order $\alpha >0$.

Keywords

  1. Poisson approximation
  2. hierarchical Laplacian
  3. ultrametric measure space
  4. field of $p$-adic numbers
  5. fractional derivative
  6. point spectrum
  7. integrated density of states
  8. Stein's method

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. A. Adell and P. Jodrá, Exact Kolmogorov and total variation distances between some familiar discrete distributions, J. Inequal. Appl., 2006 (2006), 64307.
2.
M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elementary derivation, Comm. Math. Phys., 157 (1993), pp. 245--278.
3.
S. Albeverio and W. Karwowski, A random walk on $p$-adics---the generator and its spectrum, Stochastic Process. Appl., 53 (1994), pp. 1--22.
4.
R. Arratia, L. Goldstein, and L. Gordon, Two moments suffice for Poisson approximations: The Chen--Stein method, Ann. Probab., 17 (1989), pp. 9--25.
5.
R. Arratia, L. Goldstein, and L. Gordon, Poisson approximation and the Chen--Stein method, with comments and a rejoinder by the authors, Statist. Sci., 5 (1990), pp. 403--434.
6.
A. D. Barbour, L. Holst, and S. Janson, Poisson Approximation, Oxford Stud. Probab. 2, The Clarendon Press, Oxford Univ. Press, New York, 1992.
7.
A. D. Bendikov, A. A. Grigor'yan, S. A. Molchanov, and G. P. Samorodnitsky, On a class of random perturbations of the hierarchical Laplacian, Izv. Math., 79 (2015), pp. 859--893.
8.
A. Bendikov, A. Grigor'yan, and C. Pittet, On a class of Markov semigroups on discrete ultra-metric spaces, Potential Anal., 37 (2012), pp. 125--169.
9.
A. D. Bendikov, A. A. Grigor'yan, C. Pittet, and W. Woess, Isotropic Markov semigroups on ultra-metric spaces, Russian Math. Surveys, 69 (2014), pp. 589--680.
10.
A. Bendikov and P. Krupski, On the spectrum of the hierarchical Laplacian, Potential Anal., 41 (2014), pp. 1247--1266.
11.
A. Bovier, The density of states in the Anderson model at weak disorder: A renormalization group analysis of the hierarchical model, J. Statist. Phys., 59 (1990), pp. 745--779.
12.
P. Cartier, Fonctions harmoniques sur un arbre, in Sympos. Math. IX, Convegno di Calcolo delle Probabilità, INDAM (Rome, 1971), Academic Press, London, 1972, pp. 203--270.
13.
S. Chatterjee, P. Diaconis, and E. Meckes, Exchangeable pairs and Poisson approximation, Probab. Surv., 2 (2005), pp. 64--106.
14.
M. Del Muto and A. Figà-Talamanca, Diffusion on locally compact ultrametric spaces, Expo. Math., 22 (2004), pp. 197--211.
15.
M. Del Muto and A. Figà-Talamanca, Anisotropic diffusion on totally disconnected Abelian groups, Pacific J. Math., 225 (2006), pp. 221--229.
16.
R. Durrett, Probability: Theory and Examples, 4th ed., Camb. Ser. Stat. Probab. Math. 31, Cambridge Univ. Press, Cambridge, 2010.
17.
F. J. Dyson, The dynamics of a disordered linear chain, Phys. Rev. (2), 92 (1953), pp. 1331--1338.
18.
F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys., 12 (1969), pp. 91--107.
19.
C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer-Verlag, New York, 1979.
20.
I. A. Ibragimov and Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971.
21.
A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields, Monogr. Textbooks Pure Appl. Math. 244, Marcel Dekker, Inc., New York, 2001.
22.
S. V. Kozyrev, Wavelets and spectral analysis of ultrametric pseudodifferential operators, Sb. Math., 198 (2007), pp. 97--116.
23.
E. Kritchevski, Hierarchical Anderson model, in Probability and Mathematical Physics, CRM Proc. Lecture Notes 42, Amer. Math. Soc., Providence, RI, 2007, pp. 309--322.
24.
E. Kritchevski, Spectral localization in the hierarchical Anderson model, Proc. Amer. Math. Soc., 135 (2007), pp. 1431--1440.
25.
E. Kritchevski, Poisson statistics of eigenvalues in the hierarchical Anderson model, Ann. Henri Poincaré, 9 (2008), pp. 685--709.
26.
D. Krutikov, On an essential spectrum of the random $p$-adic Schrödinger-type operator in the Anderson model, Lett. Math. Phys., 57 (2001), pp. 83--86.
27.
D. Krutikov, Spectra of $p$-adic Schrödinger-type operators with random radial potentials, J. Phys. A, 36 (2003), pp. 4433--4443.
28.
M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Ser. Statist., Springer-Verlag, New York, 1983.
29.
E. Lukacs, Characteristic Functions, 2nd ed., revised and enlarged, Hafner Publishing Co., New York, 1970.
30.
N. Minami, Local fluctuation of the spectrum of a multidimensional Anderson tight binding model, Comm. Math. Phys., 177 (1996), pp. 709--725.
31.
S. Molchanov, Hierarchical random matrices and operators. Application to Anderson model, in Multidimensional Statistical Analysis and Theory of Random Matrices (Bowling Green, OH, 1996), VSP, Utrecht, 1996, pp. 179--194.
32.
J. Pearson and J. Bellissard, Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets, J. Noncommut. Geom., 3 (2009), pp. 447--480.
33.
Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions, in Fractal Geometry and Stochastics II (Greifswald/Koserow, 1998), Progr. Probab. 46, Birkhäuser, Basel, 2000, pp. 39--65.
34.
Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions$,$ a simple proof, Math. Res. Lett., 3 (1996), pp. 231--239.
35.
N. Ross, Fundamentals of Stein's method, Probab. Surv., 8 (2011), pp. 210--293.
36.
B. Solomyak, On the random series $\sum\pm\lambda^n$ $($an Erd\Hos problem$)$}, Ann. of Math. (2), 142 (1995), pp. 611--625.
37.
B. Solomyak, Notes on Bernoulli convolutions, in Fractal Geometry and Applications: A Jubilee of Beno\^\i t Mandelbrot, Part 1, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 207--230.
38.
M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, NJ, 1975.
39.
V. S. Vladimirov, Generalized functions over the field of $p$-adic numbers, Russian Math. Surveys, 43 (1988), pp. 19--64.
40.
V. S. Vladimirov and I. V. Volovich, $p$-adic Schrödinger-type equation, Lett. Math. Phys., 18 (1989), pp. 43--53.
41.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, Ser. Soviet East European Math. 1, World Sci. Publ., River Edge, NJ, 1994.
42.
W. Woess, Denumerable Markov Chains. Generating Functions$,$ Boundary Theory$,$ Random Walks on Trees, EMS Textbk. Math., Eur. Math. Soc. (EMS), Zürich, 2009.

Information & Authors

Information

Published In

cover image Theory of Probability & Its Applications
Theory of Probability & Its Applications
Pages: 94 - 116
ISSN (online): 1095-7219

History

Submitted: 12 December 2015
Published online: 24 October 2018

Keywords

  1. Poisson approximation
  2. hierarchical Laplacian
  3. ultrametric measure space
  4. field of $p$-adic numbers
  5. fractional derivative
  6. point spectrum
  7. integrated density of states
  8. Stein's method

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media