Abstract

We find general sufficient conditions in the Marchenko--Pastur theorem for high-dimensional sample covariance matrices associated with random vectors, for which the weak concentration property of quadratic forms may not hold in general. The results are obtained by means of a new martingale method, which may be useful in other problems of random matrix theory.

Keywords

  1. random matrices
  2. sample covariance matrices
  3. the Marchenko--Pastur law

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Adamczak, On the Marchenko--Pastur and circular laws for some classes of random matrices with dependent entries, Electron. J. Probab., 16 (2011), pp. 1065--1095, https://doi.org/10.1214/EJP.v16-899.
2.
R. Adamczak, Some remarks on the Dozier--Silverstein theorem for random matrices with dependent entries, Random Matrices Theory Appl., 2 (2013), 1250017, https://doi.org/10.1142/S2010326312500177.
3.
S. Anatolyev and P. Yaskov, Asymptotics of diagonal elements of projection matrices under many instruments/regressors, Econometric Theory, 33 (2017), pp. 717--738, https://doi.org/10.1017/S0266466616000165.
4.
Z. Bai and W. Zhou, Large sample covariance matrices without independence structures in columns, Statist. Sinica, 18 (2008), pp. 425--442.
5.
Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, 2nd ed., Springer Ser. Statist., Springer, New York, 2010, https://doi.org/10.1007/978-1-4419-0661-8.
6.
M. Banna, F. Merlevède, and M. Peligrad, On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries, Stochastic Process. Appl., 125 (2015), pp. 2700--2726, https://doi.org/10.1016/j.spa.2015.01.010.
7.
J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, in STOC'09: Proceedings the 41st Annual ACM Symposium on Theory of Computing, ACM, New York, 2009, pp. 255--262, https://doi.org/10.1145/1536414.1536451.
8.
J. Bryson, R. Vershynin, and H. Zhao, Marchenko--Pastur law with relaxed independence conditions, Random Matrices Theory Appl., 10 (2021), 2150040, https://doi.org/10.1142/S2010326321500404.
9.
D. Chafaï and K. Tikhomirov, On the convergence of the extremal eigenvalues of empirical covariance matrices with dependence, Probab. Theory Related Fields, 170 (2018), pp. 847--889, https://doi.org/10.1007/s00440-017-0778-9.
10.
B. Collins, J. Yao, and W. Yuan, On spectral distribution of sample covariance matrices from large dimensional and large $k$-fold tensor products, Electron. J. Probab., 27 (2022), pp. 1--18, https://doi.org/10.1214/22-EJP825.
11.
V. L. Girko and A. K. Gupta, Asymptotic behavior of spectral function of empirical covariance matrices, Random Oper. Stochastic Equations, 2 (1994), pp. 43--60, https://doi.org/10.1515/rose.1994.2.1.43.
12.
F. Götze, A. A. Naumov, and A. N. Tikhomirov, Limit theorems for two classes of random matrices with dependent entries, Theory Probab. Appl., 59 (2015), pp. 23--39, https://doi.org/10.1137/S0040585X97986916.
13.
A. Lytova, Central limit theorem for linear eigenvalue statistics for a tensor product version of sample covariance matrices, J. Theoret. Probab., 31 (2018), pp. 1024--1057, https://doi.org/10.1007/s10959-017-0741-9.
14.
V. A. Marčenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Math. USSR-Sb., 1 (1967), pp. 457--483, https://doi.org/10.1070/SM1967v001n04ABEH001994.
15.
A. Pajor and L. Pastur, On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution, Studia Math., 195 (2009), pp. 11--29, https://doi.org/10.4064/sm195-1-2.
16.
L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Math. Surveys Monogr. 171, Amer. Math. Soc., Providence, RI, 2011, https://doi.org/10.1090/surv/171.
17.
N. Srivastava and R. Vershynin, Covariance estimation for distributions with $2+\varepsilon$ moments, Ann. Probab., 41 (2013), pp. 3081--3111, https://doi.org/10.1214/12-AOP760.
18.
P. Yaskov, Lower bounds on the smallest eigenvalue of a sample covariance matrix, Electron. Commun. Probab., 19 (2014), 83, https://doi.org/10.1214/ECP.v19-3807.
19.
P. Yaskov, Sharp lower bounds on the least singular value of a random matrix without the fourth moment condition, Electron. Commun. Probab., 20 (2015), 44, https://doi.org/10.1214/ECP.v20-4089.
20.
P. Yaskov, Variance inequalities for quadratic forms with applications, Math. Methods Statist., 24 (2015), pp. 309--319, https://doi.org/10.3103/S1066530715040055.
21.
P. Yaskov, A short proof of the Marchenko--Pastur theorem, C. R. Math. Acad. Sci. Paris, 354 (2016), pp. 319--322, https://doi.org/10.1016/j.crma.2015.12.008.
22.
P. Yaskov, Necessary and sufficient conditions for the Marchenko--Pastur theorem, Electron. Commun. Probab., 21 (2016), 73, https://doi.org/10.1214/16-ECP4748.
23.
P. Yaskov, LLN for quadratic forms of long memory time series and its applications in random matrix theory, J. Theoret. Probab., 31 (2018), pp. 2032--2055, https://doi.org/10.1007/s10959-017-0767-z.
24.
P. Yaskov, Limit of the smallest eigenvalue of a sample covariance matrix for spherical and related distributions, in Recent Developments in Stochastic Methods and Applications (ICSM-5, Moscow, 2020), Springer Proc. Math. Statist. 371, Springer, Cham, 2021, pp. 229--241, https://doi.org/10.1007/978-3-030-83266-7_17.
25.
P. A. Yaskov, Limiting spectral distribution for large sample covariance matrices with graph-dependent elements, Theory Probab. Appl., 67 (2022), pp. 375--388, https://doi.org/10.1137/S0040585X97T991003.
26.
P. Yaskov, Marchenko--Pastur law for a random tensor model, Electron. Commun. Probab., 28 (2023), 23, https://doi.org/10.1214/23-ECP527.
27.
Y. Q. Yin, Z. D. Bai, and P. R. Krishnaiah, On the limit of the largest eigenvalue of the large dimensional sample covariance matrix, Probab. Theory Related Fields, 78 (1988), pp. 509--521, https://doi.org/10.1007/BF00353874.

Information & Authors

Information

Published In

cover image Theory of Probability & Its Applications
Theory of Probability & Its Applications
Pages: 657 - 673
ISSN (online): 1095-7219

History

Submitted: 28 June 2023
Published online: 7 February 2024

Keywords

  1. random matrices
  2. sample covariance matrices
  3. the Marchenko--Pastur law

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media