Abstract

This article is devoted to maximization of HARA (hyperbolic absolute risk aversion) utilities of the exponential Lévy switching processes on a finite time interval via the dual method. The description of all $f$-divergence minimal martingale measures and the expression of their Radon--Nikodým densities involving the Hellinger and Kulback--Leibler processes are given. The optimal strategies in progressively enlarged filtration for the maximization of HARA utilities as well as the values of the corresponding maximal expected utilities are derived. As an example, the Brownian switching model is presented with financial interpretations of the results via the value process.

Keywords

  1. Lévy switching models
  2. utility maximization
  3. dual approach
  4. $f$-divergence minimal martingale measure
  5. optimal strategy

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Aksamit and M. Jeanblanc, Enlargement of Filtration with Finance in View, SpringerBriefs Quant. Finance, Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-41255-9.
2.
J. Cai, A Markov model of switching-regime ARCH, J. Bus. Econom. Statist., 12 (1994), pp. 309--316, https://doi.org/10.2307/1392087.
3.
G. Callegaro, M. Jeanblanc, and B. Zargari, Carthaginian enlargement of filtrations, ESAIM Probab. Stat., 17 (2013), pp. 550--566, https://doi.org/10.1051/ps/2011162.
4.
S. Cawston and L. Vostrikova, An $f$-divergence approach for optimal portfolios in exponential Lévy models, in Inspired by Finance, Springer, Cham, 2014, pp. 83--101, https://doi.org/10.1007/978-3-319-02069-3_5.
5.
S. Cawston and L. Vostrikova, Lévy preservation and associated properties for the $f$-divergence minimal equivalent martingale measures, in Prokhorov and Contemporary Probability Theory, Springer Proc. Math. Stat. 33, Springer, Heidelberg, 2013, pp. 163--196, https://doi.org/10.1007/978-3-642-33549-5_9.
6.
S. Cawston and L. Vostrikova, $f$-divergence minimal martingale measures and optimal portfolios for exponential Lévy models with a change-point, in Seminar on Stochastic Analysis, Random Fields and Applications VII, Progr. Probab. 67, Birkhäuser/Springer, Basel, 2013, pp. 305--336, https://doi.org/10.1007/978-3-0348-0545-2_16.
7.
T. Choulli and C. Stricker, Minimal entropy--Hellinger martingale measure in incomplete markets, Math. Finance, 15 (2005), pp. 465--490, https://doi.org/10.1111/j.1467-9965.2005.00229.x.
8.
T. Choulli, C. Stricker, and J. Li, Minimal Hellinger martingale measures of order $q$, Finance Stoch., 11 (2007), pp. 399--427, https://doi.org/10.1007/s00780-007-0039-3.
9.
K. Chourdakis, Switching Lévy Models in Continuous Time: Finite Distributions and Option Pricing, Univ. Essex, CCFEA, working paper, 2005, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=838924.
10.
R. J. Elliott and C.-J. U. Osakwe, Option pricing for pure jump processes with Markov switching compensators, Finance Stoch., 10 (2006), pp. 250--275, https://doi.org/10.1007/s00780-006-0004-6.
11.
R. J. Elliott, T. K. Siu, and L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching, Appl. Math. Finance, 14 (2007), pp. 41--62, https://doi.org/10.1080/13504860600659222.
12.
M. Escobar, D. Neykova, and R. Zagst, Portfolio optimization in affine models with Markov switching, Int. J. Theor. Appl. Finance, 18 (2015), 1550030, https://doi.org/10.1142/S0219024915500302.
13.
F. Esche and M. Schweizer, Minimal entropy preserves the Lévy property: How and why, Stochastic Process. Appl., 115 (2005), pp. 299--327, https://doi.org/10.1016/j.spa.2004.05.009.
14.
A. Ellanskaya and L. Vostrikova, Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities, Proc. Steklov Inst. Math., 287 (2014), pp. 68--95, https://doi.org/10.1134/S0081543814080057.
15.
P. François, G. Gautier, and F. Godin, Optimal hedging when the underlying asset follows a regime-switching Markov process, European J. Oper. Res., 237 (2014), pp. 312--322, https://doi.org/10.1016/j.ejor.2014.01.034.
16.
T. Fujiwara and Y. Miyahara, The minimal entropy martingale measures for geometric Lévy processes, Finance Stoch., 7 (2003), pp. 509--531, https://doi.org/10.1007/s007800200097.
17.
T. Goll and L. Rüschendorf, Minimax and minimal distance martingale measures and their relationship to portfolio optimization, Finance Stoch., 5 (2001), pp. 557--581, https://doi.org/10.1007/s007800100052.
18.
D. Gasbarra, E. Valkeila, and L. Vostrikova, Enlargement of filtration and additional information in pricing models: Bayesian approach, in From Stochastic Calculus to Mathematical Finance, Springer-Verlag, Berlin, 2006, pp. 257--285, https://doi.org/10.1007/978-3-540-30788-4_13.
19.
J. D. Hamilton and R. Susmel, Autoregressive conditional heteroskedasticity and changes in regime, J. Econometrics, 64 (1994), pp. 307--333, https://doi.org/10.1016/0304-4076(94)90067-1.
20.
D. Hainaut, Switching Lévy Processes: A Toolbox for Financial Applications, working paper, 2010.
21.
F. Hubalek and C. Sgarra, Esscher transforms and the minimal entropy martingale measure for exponential Lévy models, Quant. Finance, 6 (2006), pp. 125--145, https://doi.org/10.1080/14697680600573099.
22.
K. R. Jackson, S. Jaimungal, and V. Surkov, Option pricing with regime switching Lévy processes using Fourier space time stepping, in FEA 2007: Proceedings of the Fourth IASTED International Conference on Financial Engineering and Applications, (Berkeley, CA, 2007), ACTA Press, Anaheim, CA, 2007, pp. 92--97.
23.
J. Jacod, Grossissement initial, hypothèse $(\mathrm{H}')$ et théorème de Girsanov, in Grossissements de Filtrations: Exemples et Applications, Lecture Notes in Math. 1118, Springer, Berlin, 1985, pp. 15--35, https://doi.org/10.1007/BFb0075768.
24.
J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd ed., Grundlehren Math. Wiss. 288, Springer-Verlag, Berlin, 2003, https://doi.org/10.1007/978-3-662-05265-5.
25.
M. Jeanblanc, S. Klöppel, and Y. Miyahara, Minimal $f^q$-martingale measures for exponential Lévy processes, Ann. Appl. Probab., 17 (2007), pp. 1615--1638, https://doi.org/10.1214/07-AAP439.
26.
E. I. Kolomiets, Relations between triplets of local characteristics of semimartingales, Russian Math. Surveys, 39 (1984), pp. 123--124, https://doi.org/10.1070/RM1984v039n04ABEH004057.
27.
M. Konikov and D. B. Madan, Option pricing using variance gamma Markov chain, Rev. Deriv. Res., 5 (2002), pp. 81--115, https://doi.org/10.1023/A:1013816400834.
28.
Y. Miyahara, Minimal entropy martingale measures of jump type price processes in incomplete assets markets, Asia-Pac. Financ. Mark., 6 (1999), pp. 97--113, https://doi.org/10.1023/A:1010062625672.
29.
M. K. P. So, K. Lam, and W. K. Li, A stochastic volatility model with Markov switching, J. Bus. Econom. Statist., 16 (1998), pp. 244--253, https://doi.org/10.2307/1392580.
30.
L. Vostrikova, Expected utility maximization for exponential Lévy models with option and information processes, Theory Probab. Appl., 61 (2017), pp. 107--128, https://doi.org/10.1137/S0040585X97T987983.

Information & Authors

Information

Published In

cover image Theory of Probability & Its Applications
Theory of Probability & Its Applications
Pages: 127 - 149
ISSN (online): 1095-7219

History

Submitted: 19 October 2020
Published online: 2 May 2024

Keywords

  1. Lévy switching models
  2. utility maximization
  3. dual approach
  4. $f$-divergence minimal martingale measure
  5. optimal strategy

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media