Abstract

Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structures of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shift structure has received far less attention in the context of quantum computation. In this paper, we present three examples of “unknown shift” problems that can be solved efficiently on a quantum computer using the quantum Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence that the problem is hard to solve classically, by showing a reduction from breaking algebraically homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden shift problem and the hidden subgroup problem. This framework provides a unified way of viewing the ability of the Fourier transform to capture subgroup and shift structure.

MSC codes

  1. 81P68
  2. 68W40
  3. 11Y16

Keywords

  1. quantum computing
  2. efficient algorithms
  3. Legendre symbol

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Abadi and J. Feigenbaum, Secure circuit evaluation. A protocol based on hiding information from an oracle, J. Cryptology, 2 (1990), pp. 1–12.
2.
E. Bach and J. Shallit, Algorithmic Number Theory—Efficient Algorithms, Vol. I, MIT Press, Cambridge, MA, 1996.
3.
R. Beals, Quantum computation of Fourier transforms over symmetric groups, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 48–53.
4.
J. Niel de Beaudrap, R. Cleve, and J. Watrous, Sharp quantum versus classical query complexity separations, Algorithmica, 34 (2002), pp. 449–461.
5.
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510–1523.
6.
E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997), pp. 1411–1473.
7.
M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo‐random bits, SIAM J. Comput., 13 (1984), pp. 850–864.
8.
D. Boneh and R. J. Lipton, Quantum cryptanalysis of hidden linear functions, in Advances in Cryptology—CRYPTO ‘95, Lecture Notes in Comput. Sci. 963, Springer‐Verlag, Berlin, 1995, pp. 424–437.
9.
D. Boneh and R. J. Lipton, Algorithms for black‐box fields and their application to cryptography, in Advances in Cryptology—CRYPTO ‘96, Lecture Notes in Comput. Sci. 1109, Springer‐Verlag, Berlin, 1996, pp. 283–297.
10.
R. Cleve, The query complexity of order‐finding, Inform. and Comput., 192 (2004), pp. 162–171.
11.
R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 339–354.
12.
R. Cleve and J. Watrous, Fast parallel circuits for the quantum Fourier transform, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 526–536.
13.
W. van Dam, Quantum algorithms for weighing matrices and quadratic residues, Algorithmica, 34 (2002), pp. 413–428.
14.
W. van Dam and S. Hallgren, Efficient Quantum Algorithms for Shifted Quadratic Character Problems, http://www.arxiv.org/abs/quant‐ph/0011067 (2000).
15.
W. van Dam, S. Hallgren, and L. Ip, Quantum algorithms for some hidden shift problems, in Proceedings of the Fourteenth Annual ACM‐SIAM Symposium on Discrete Algorithms, 2003, pp. 489–498.
16.
W. van Dam and G. Seroussi, Efficient Quantum Algorithms for Estimating Gauss Sums, http://www.arxiv.org/abs/quant‐ph/0207131 (2002).
17.
I. B. Damgård, On the randomness of Legendre and Jacobi sequences, in Advances in Cryptology—CRYPTO'88, Lecture Notes in Comput. Sci. 403, Springer‐Verlag, Berlin, 1990, pp. 163–172.
18.
M. Ettinger and P. Høyer, On quantum algorithms for noncommutative hidden subgroups, Adv. in Appl. Math., 25 (2000), pp. 239–251.
19.
M. Ettinger, P. Høyer, and E. Knill, Hidden Subgroup States Are Almost Orthogonal, http://www.arxiv.org/abs/quant‐ph/9901034 (1999).
20.
K. Friedl, F. Magniez, M. Santha, and P. Sen, Quantum testers for hidden group properties, in Proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 2747, Springer‐Verlag, Berlin, 2003, pp. 419–428.
21.
M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani, Quantum mechanical algorithms for the nonabelian hidden subgroup problem, Combinatorica, 24 (2004), pp. 137–154.
22.
L. Hales, The Quantum Fourier Transform and Extensions of the Abelian Hidden Subgroup Problem, Ph.D. thesis, University of California‐Berkeley, Berkeley, CA, 2002.
23.
L. Hales and S. Hallgren, An improved quantum Fourier transform algorithms and applications, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 515–525.
24.
S. Hallgren, Polynomial‐time quantum algorithms for Pell’s equation and the principal ideal problem, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 653–658.
25.
S. Hallgren, A. Russell, and A. Ta‐Shma, The hidden subgroup problem and quantum computation using group representations, SIAM J. Comput., 32 (2003), pp. 916–934.
26.
L. Ip, Solving Shift Problems and the Hidden Coset Problem Using the Fourier Transform, http://www.arxiv.org/abs/quant‐ph/0205034 (2002).
27.
G. Ivanyos, F. Magniez, and M. Santha, Efficient quantum algorithms for some instances of the non‐abelian hidden subgroup problem, Internat. J. Found. Comput. Sci., 14 (2003), pp. 723–739.
28.
A. Yu. Kitaev, Quantum Measurements and the Abelian Stabilizer Problem, http://www.arxiv.org/abs/quant‐ph/9511026 (1995).
29.
A. Yu. Kitaev, Quantum computations: Algorithms and error correction, Russian Math. Surveys, 52 (1997), pp. 1191–1249.
30.
R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia Math. Appl. 20, Cambridge University Press, Cambridge, UK, 1997.
31.
A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptology, CRC Press, Boca Raton, FL, 1997.
32.
M. Mosca and A. Ekert, The hidden subgroup problem and eigenvalue estimation on a quantum computer, in Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communication, Lecture Notes in Comput. Sci. 1509, Springer‐Verlag, Berlin, 1999, pp. 174–188.
33.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
34.
P. W. Shor, Polynomial‐time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26 (1997), pp. 1484–1509.
35.
D. R. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), pp. 1474–1483.
36.
R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transform and Convolution, Springer‐Verlag, New York, 1989.
37.
J. Watrous, Quantum algorithms for solvable groups, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 60–67.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 763 - 778
ISSN (online): 1095-7111

History

Submitted: 15 July 2003
Accepted: 28 February 2006
Published online: 24 October 2006

MSC codes

  1. 81P68
  2. 68W40
  3. 11Y16

Keywords

  1. quantum computing
  2. efficient algorithms
  3. Legendre symbol

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media