We study the problem of waking up a collection of n processors connected by a multihop ad hoc ratio network with unknown topology, no access to a global clock, and no collision detection mechanism available. Each node in the network either wakes up spontaneously or gets activated by receiving a wake‐up signal from another node. All active nodes transmit the wake‐up signals according to a given protocol $\calW$. The running time of $\calW$ is the number of steps counted from the first spontaneous wake‐up until all nodes become activated. We provide two protocols for this problem. The first one is a deterministic protocol with running time $O(n^{5/3}\log n)$. Our protocol is based on a novel concept of a shift‐tolerant selector to which we refer as a (radio) synchronizer. The second protocol is randomized, and its expected running time is $O(D \log^2 n)$, where D is the diameter of the network. Subsequently we show how to employ our wake‐up protocols to solve two other communication primitives: leader election and clock synchronization.

  • [1]  Google Scholar

  • [2]  Google Scholar

  • [3]  B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823. CrossrefISIGoogle Scholar

  • [4]  Google Scholar

  • [5]  R. Bar‐Yehuda, O. Goldreich and , and A. Itai, On the time complexity of broadcast in radio networks: An exponential gap between determinism and randomization, J. Comput. System Sci., 45 (1992), pp. 104–126. 8na JCSSBM 0022-0000 J. Comput. Syst. Sci. CrossrefISIGoogle Scholar

  • [6]  R. Bar‐Yehuda, O. Goldreich and , and A. Itai, Efficient emulation of single‐hop radio network with collision detection on multi‐hop radio network with no collision detection, Distrib. Comput., 5 (1991), pp. 67–71. CrossrefISIGoogle Scholar

  • [7]  R. Bar‐Yehuda, A. Israeli and , and A. Itai, Multiple communication in multihop radio networks, SIAM J. Comput., 22 (1993), pp. 875–887. sim SMJCAT 0097-5397 SIAM J. Comput. LinkISIGoogle Scholar

  • [8]  D. Bruschi and  and M. Del Pinto, Lower bounds for the broadcast problem in mobile radio networks, Distrib. Comput., 10 (1997), pp. 129–135. CrossrefISIGoogle Scholar

  • [9]  I. Chlamtac and  and O. Weinstein, The wave expansion approach to broadcasting in multihop radio networks, IEEE Trans. Commun., 39 (1991), pp. 426–433. itd IECMBT 0090-6778 IEEE Trans. Commun. CrossrefISIGoogle Scholar

  • [10]  B. S. Chlebus, L. Ga¸sieniec, A. Gibbons, A. Pelc and , and W. Rytter, Deterministic broadcasting in unknown radio networks, Distrib. Comput., 15 (2002), pp. 27–38. CrossrefISIGoogle Scholar

  • [11]  Google Scholar

  • [12]  Google Scholar

  • [13]  Google Scholar

  • [14]  M. Chrobak, L. Ga¸sieniec and , and W. Rytter, Fast broadcasting and gossiping in radio networks, J. Algorithms, 46 (2003), pp. 1–20. aug JOALDV 0196-6774 J. Algorithms CrossrefISIGoogle Scholar

  • [15]  Google Scholar

  • [16]  A. Clementi, A. Monti and , and R. Silvestri, Distributed broadcast in radio networks of unknown topology, Theoret. Comput. Sci., 302 (2003), pp. 337–364. tco TCSCDI 0304-3975 Theor. Comput. Sci. CrossrefISIGoogle Scholar

  • [17]  A. Czumaj and  and W. Rytter, Broadcasting algorithms in radio networks with unknown topology, J. Algorithms, 60 (2006), pp. 115–143. aug JOALDV 0196-6774 J. Algorithms CrossrefISIGoogle Scholar

  • [18]  A. DeBonis, L. Ga¸sieniec and , and U. Vaccaro, Optimal two‐stage algorithms for group testing problems, SIAM J. Comput., 34 (2005), pp. 1253–1270. sim SMJCAT 0097-5397 SIAM J. Comput. LinkISIGoogle Scholar

  • [19]  M. J. Fischer, S. Moran, S. Rudich and , and G. Taubenfeld, The wakeup problem, SIAM J. Comput., 25 (1996), pp. 1332–1357. sim SMJCAT 0097-5397 SIAM J. Comput. LinkISIGoogle Scholar

  • [20]  L. Ga¸sieniec, A. Pelc and , and D. Peleg, The wakeup problem in synchronous broadcast systems, SIAM J. Discrete Math., 14 (2001), pp. 207–222. am2 ZZZZZZ 0895-4801 SIAM J. Discrete Math. LinkISIGoogle Scholar

  • [21]  Google Scholar

  • [22]  Google Scholar

  • [23]  T. Jurdziński and  and G. Stachowiak, Probabilistic algorithms for the wakeup problem in single‐hop radio networks, Theory Comput. Syst., 38 (2005), pp. 347–367. ar2 TCSYFI 1432-4350 Theory Comput. Syst. CrossrefISIGoogle Scholar

  • [24]  D. R. Kowalski and  and A. Pelc, Faster deterministic broadcasting in ad hoc radio networks, SIAM J. Discrete Math., 18 (2004), pp. 332–346. am2 ZZZZZZ 0895-4801 SIAM J. Discrete Math. LinkISIGoogle Scholar

  • [25]  D. R. Kowalski and  and A. Pelc, Broadcasting in undirected ad hoc radio networks, Distrib. Comput., 18 (2005), pp. 43–57. CrossrefISIGoogle Scholar

  • [26]  E. Kushilevitz and  and Y. Mansour, An $\Omega(D \log (N/D))$ lower bound for broadcast in radio networks, SIAM J. Comput., 27 (1998), pp. 702–712. sim SMJCAT 0097-5397 SIAM J. Comput. LinkISIGoogle Scholar

  • [27]  Google Scholar

  • [28]  Google Scholar

  • [29]  R. M. Metcalfe and  and D. R. Boggs, Ethernet: Distributed packet switching for local computer networks, ACM Communications, 19 (1976), pp. 395–404. CrossrefISIGoogle Scholar

  • [30]  Google Scholar

  • [31]  Google Scholar