Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show how to construct a pseudorandom generator from any one-way function. Since it is easy to construct a one-way function from a pseudorandom generator, this result shows that there is a pseudorandom generator if and only if there is a one-way function.

  • [1]  Werner Alexi, Benny Chor, Oded Goldreich and , Claus‐P. Schnorr, RSA and Rabin functions: certain parts are as hard as the whole, SIAM J. Comput., 17 (1988), 194–209, Special issue on cryptography 89j:11120 LinkISIGoogle Scholar

  • [2]  László Babai, Lance Fortnow, Noam Nisan and , Avi Wigderson, BPP has subexponential time simulations unless EXPTIME has publishable proofs, Comput. Complexity, 3 (1993), 307–318 95e:68061 CrossrefGoogle Scholar

  • [3]  Charles Bennett, Gilles Brassard and , Jean‐Marc Robert, Privacy amplification by public discussion, SIAM J. Comput., 17 (1988), 210–229, Special issue on cryptography 89c:94028 LinkISIGoogle Scholar

  • [4]  M. Blum, Independent unbiased coin flips from a correlated biased source—a finite state Markov chain, Combinatorica, 6 (1986), 97–108, Theory of computing (Singer Island, Fla., 1984) 88e:60079 CrossrefISIGoogle Scholar

  • [5]  Manuel Blum and , Silvio Micali, How to generate cryptographically strong sequences of pseudorandom bits, SIAM J. Comput., 13 (1984), 850–864 86a:68021 LinkISIGoogle Scholar

  • [6]  Google Scholar

  • [7]  Joan Boyar, Inferring sequences produced by pseudo‐random number generators, J. Assoc. Comput. Mach., 36 (1989), 129–141 10.1145/58562.59305 91g:68035 CrossrefISIGoogle Scholar

  • [8]  L. Carter and  and M. Wegman, Universal classes of hash functions, J. Comput. System Sci., 18 (1979), pp. 143–154. 8na JCSSBM 0022-0000 J. Comput. Syst. Sci. CrossrefISIGoogle Scholar

  • [9]  Benny Chor and , Oded Goldreich, Unbiased bits from sources of weak randomness and probabilistic communication complexity, SIAM J. Comput., 17 (1988), 230–261, Special issue on cryptography 89e:68044 LinkISIGoogle Scholar

  • [10]  D. Diffie and  and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, 22 (1976), pp. 644–654. iet IETTAW 0018-9448 IEEE Trans. Inf. Theory CrossrefISIGoogle Scholar

  • [11]  Oded Goldreich, A note on computational indistinguishability, Inform. Process. Lett., 34 (1990), 277–281 10.1016/0020-0190(90)90010-U 91f:68086 CrossrefISIGoogle Scholar

  • [12]  Oded Goldreich, Shafi Goldwasser and , Silvio Micali, How to construct random functions, J. Assoc. Comput. Mach., 33 (1986), 792–807 10.1145/6490.6503 88d:68044 CrossrefISIGoogle Scholar

  • [13]  Oded Goldreich, Hugo Krawczyk and , Michael Luby, On the existence of pseudorandom generators, SIAM J. Comput., 22 (1993), 1163–1175 95f:11054 LinkISIGoogle Scholar

  • [14]  Google Scholar

  • [15]  Oded Goldreich, Silvio Micali and , Avi Wigderson, Proofs that yield nothing but their validity, or All languages in NP have zero‐knowledge proof systems, J. Assoc. Comput. Mach., 38 (1991), 691–729 93b:68025 CrossrefISIGoogle Scholar

  • [16]  S. Goldwasser and  and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984), pp. 270–299. 8na JCSSBM 0022-0000 J. Comput. Syst. Sci. CrossrefISIGoogle Scholar

  • [17]  Shafi Goldwasser, Silvio Micali and , Charles Rackoff, The knowledge complexity of interactive proof systems, SIAM J. Comput., 18 (1989), 186–208 90f:68157 LinkISIGoogle Scholar

  • [18]  Shafi Goldwasser, Silvio Micali and , Po Tong, Why and how to establish a private code on a public network, IEEE, New York, 1982, 134–144 780391 Google Scholar

  • [19]  Google Scholar

  • [20]  Google Scholar

  • [21]  Google Scholar

  • [22]  Google Scholar

  • [23]  Russell Impagliazzo and , Moni Naor, Efficient cryptographic schemes provably as secure as subset sum, J. Cryptology, 9 (1996), 199–216 97k:94030 CrossrefISIGoogle Scholar

  • [24]  Google Scholar

  • [25]  Google Scholar

  • [26]  Google Scholar

  • [27]  A. N. Kolmogorov, Three approaches to the concept of the amount of information, Problems Inform. Transmission, 1 (1965), pp. 1–7. pit PRITA9 0032-9460 Probl. Inf. Transm. Google Scholar

  • [28]  Hugo Krawczyk, How to predict congruential generators, J. Algorithms, 13 (1992), 527–545 93g:65013 CrossrefISIGoogle Scholar

  • [29]  L. Levin, One way functions and pseudorandom generators, Combinatorica, 7 (1987), 357–363 89c:68048 CrossrefISIGoogle Scholar

  • [30]  L. A. Levin, Randomness and non‐determinism, J. Symbolic Logic, 58 (1993), pp. 1102–1103. avk JSYLA6 0022-4812 J. Symb. Log. Google Scholar

  • [31]  Michael Luby, Pseudorandomness and cryptographic applications, Princeton Computer Science Notes, Princeton University Press, 1996xvi+234 97b:94024 CrossrefGoogle Scholar

  • [32]  Michael Luby and , Charles Rackoff, How to construct pseudorandom permutations from pseudorandom functions, SIAM J. Comput., 17 (1988), 373–386, Special issue on cryptography 89i:68025 LinkISIGoogle Scholar

  • [33]  Google Scholar

  • [34]  Google Scholar

  • [35]  Google Scholar

  • [36]  M. Naor, Bit commitment using pseudorandom generators, J. Cryptology, 4 (1991), pp. 151–158. jzq JOCREQ 0933-2790 J. Cryptology CrossrefGoogle Scholar

  • [37]  Google Scholar

  • [38]  Google Scholar

  • [39]  Google Scholar

  • [40]  R. Rivest, A. Shamir and , and L. Adleman, A method for obtaining digital signatures and public‐key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126. CrossrefISIGoogle Scholar

  • [41]  Google Scholar

  • [42]  M. Santha and  and U. Vazirani, Generating quasi‐random sequences from slightly‐random sources, J. Comput. System Sci., 33 (1986), pp. 75–87. 8na JCSSBM 0022-0000 J. Comput. Syst. Sci. CrossrefISIGoogle Scholar

  • [43]  C. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 0–0379–423, 623–656 10,133e CrossrefGoogle Scholar

  • [44]  Google Scholar

  • [45]  U. Vazirani, Towards a strong communication complexity theory or generating quasi‐random sequences from two communicating slightly‐random sources, Combinatorica, 7 (1987), pp. 375–392. aud COMBDI 0209-9683 Combinatorica CrossrefISIGoogle Scholar

  • [46]  Google Scholar

  • [47]  Andrew Yao, Theory and applications of trapdoor functions, IEEE, New York, 1982, 80–91 780384 Google Scholar