Abstract

In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch's model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97--117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension.
We also consider the precision to which the transition amplitudes of a quantum Turing machine need to be specified. We prove that $O(\log T)$ bits of precision suffice to support a T step computation. This justifies the claim that the quantum Turing machine model should be regarded as a discrete model of computation and not an analog one.
We give the first formal evidence that quantum Turing machines violate the modern (complexity theoretic) formulation of the Church--Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a bounded-error probabilistic Turing machine, and thus not in the class $\BPP$. The class $\BQP$ of languages that are efficiently decidable (with small error-probability) on a quantum Turing machine satisfies $\BPP \subseteq \BQP \subseteq \Ptime^{\SP}$. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.

MSC codes

  1. 68Q05
  2. 68Q15
  3. 03D10
  4. 03D15

Keywords

  1. quantum computation
  2. quantum Turing machines
  3. reversibility
  4. quantum polynomial time
  5. Fourier sampling
  6. universal quantum Turing machine

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Leonard Adleman, Jonathan Demarrais, Ming‐Deh Huang, Quantum computability, SIAM J. Comput., 26 (1997), 1524–1540
2.
S. Arora, R. Impagliazzo, and U. Vazirani, On the Role of the Cook‐Levin Theorem in Complexity Theory, manuscript, 1993.
3.
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and intractability of approximation problems, in Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1992, pp. 14–23.
4.
László Babai, Shlomo Moran, Arthur‐Merlin games: a randomized proof system, and a hierarchy of complexity classes, J. Comput. System Sci., 36 (1988), 254–276, 17th Annual ACM Symposium on the Theory of Computing (Providence, RI, 1985)
5.
A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A, 52 (1995), pp. 3457–3467.
6.
Paul Benioff, Quantum mechanical Hamiltonian models of Turing machines, J. Statist. Phys., 29 (1982), 515–546
7.
C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973), pp. 525–532.
8.
Charles Bennett, Time/space trade‐offs for reversible computation, SIAM J. Comput., 18 (1989), 766–776
9.
Charles Bennett, Ethan Bernstein, Gilles Brassard, Umesh Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput., 26 (1997), 1510–1523
10.
Ethan Bernstein, Umesh Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997), 1411–1473
11.
E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 11–20.
12.
André Berthiaume, Gilles Brassard, The quantum challenge to structural complexity theory, IEEE Comput. Soc. Press, Los Alamitos, CA, 1992, 132–137
13.
André Berthiaume, Gilles Brassard, Oracle quantum computing, J. Modern Opt., 41 (1994), 2521–2535
14.
A. Berthiaume, D. Deutsch, and R. Jozsa, The stabilisation of quantum computation, in Proc. Workshop on Physics and Computation, Dallas, TX, IEEE Computer Society Press, Los Alamitos, CA, 1994, p. 60.
15.
N. Bshouty and J. Jackson, Learning DNF over uniform distribution using a quantum example oracle, in Proc. 8th Annual ACM Conference on Computational Learning Theory, ACM, New York, 1995, pp. 118–127.
16.
A. R. Calderbank and P. Shor, Good quantum error correcting codes exist, Phys. Rev. A, 54 (1996), pp. 1098–1106.
17.
J. I. Cirac and P. Zoller, Quantum computation using trapped cold ions, Phys. Rev. Lett., 74 (1995), pp. 4091–4094.
18.
I. Chuang, R. Laflamme, P. Shor, W. Zurek, Quantum computers, factoring, and decoherence, Science, 270 (1995), 1633–1635
19.
C. Cohen‐Tannoudji, B. Diu, and F. LaLoe, Quantum Mechanics, Longman Scientific & Technical, Essex, 1977, pp. 108–181.
20.
D. Deutsch, Quantum theory, the Church‐Turing principle and the universal quantum computer, Proc. Roy. Soc. London Ser. A, 400 (1985), 97–117
21.
D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425 (1989), 73–90
22.
David Deutsch, Richard Jozsa, Rapid solution of problems by quantum computation, Proc. Roy. Soc. London Ser. A, 439 (1992), 553–558
23.
D. DiVincenzo, Two‐bit gates are universal for quantum computation, Phys. Rev. A, 51 (1995), pp. 1015–1022.
24.
Christoph Dürr, Miklos Santha, A decision procedure for unitary linear quantum cellular automata, IEEE Comput. Soc. Press, Los Alamitos, CA, 1996, 38–45
25.
Richard Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1981/82), 467–488, Physics of computation, Part II (Dedham, Mass., 1981)
26.
Richard Feynman, Quantum mechanical computers, Found. Phys., 16 (1986), 507–531
27.
E. Fredkin and T. Toffoli, Conservative Logic, Internat. J. Theoret. Phys., 21 (1982), p. 219.
28.
Lov Grover, A fast quantum mechanical algorithm for database search, ACM, New York, 1996, 212–219
29.
Rolf Landauer, Is quantum mechanics useful?, Philos. Trans. Roy. Soc. London Ser. A, 353 (1995), 367–376
30.
R. Lipton, Personal communication, 1994.
31.
S. Lloyd, A potentially realizable quantum computer, Science, 261 (1993), pp. 1569–1571.
32.
J. Machta, Phase Information in Quantum Oracle Computing, Physics Department, University of Massachusetts, Amherst, MA, manuscript, 1996.
33.
K. Morita, A. Shirasaki, and Y. Gono, A 1‐tape 2‐symbol reversible Turing machine, IEEE Trans. IEICE, E72 (1989), pp. 223–228.
34.
J. von Neumann, Various Techniques Used in Connection with Random Digits, Notes by G. E. Forsythe, National Bureau of Standards, Applied Math Series, 12 (1951), pp. 36–38.
Reprinted in von Neumann’s Collected Works, Vol. 5, A. H. Taub, ed., Pergamon Press, Elmsford, NY, 1963, pp. 768–770.
35.
G. Palma, Kalle‐Antti Suominen, Artur Ekert, Quantum computers and dissipation, Proc. Roy. Soc. London Ser. A, 452 (1996), 567–584
36.
Adi Shamir, IP=PSPACE, IEEE Comput. Soc. Press, Los Alamitos, CA, 1990, 11–15
37.
P. Shor, Algorithms for quantum computation: Discrete log and factoring, in Proc. 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1994, pp. 124–134.
38.
Peter Shor, Fault‐tolerant quantum computation, IEEE Comput. Soc. Press, Los Alamitos, CA, 1996, 56–65
39.
Daniel Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), 1474–1483
40.
R. Solovay and A. Yao, manuscript, 1996.
41.
Tommaso Toffoli, Bicontinuous extensions of invertible combinatorial functions, Math. Systems Theory, 14 (1981), 13–23
42.
W. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A, 51 (1995), p. 992.
43.
L. Valiant, Personal communication, 1992.
44.
U. Vazirani and V. Vazirani, Random polynomial time is equal to semi‐random polynomial time, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, 1985, pp. 417–428.
45.
John Watrous, On one‐dimensional quantum cellular automata, IEEE Comput. Soc. Press, Los Alamitos, CA, 1995, 528–537
46.
Andrew Yao, Quantum circuit complexity, IEEE Comput. Soc. Press, Los Alamitos, CA, 1993, 352–361
47.
Aravind Srinivasan, David Zuckerman, Computing with very weak random sources, SIAM J. Comput., 28 (1999), 1433–1459

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1411 - 1473
ISSN (online): 1095-7111

History

Published online: 28 July 2006

MSC codes

  1. 68Q05
  2. 68Q15
  3. 03D10
  4. 03D15

Keywords

  1. quantum computation
  2. quantum Turing machines
  3. reversibility
  4. quantum polynomial time
  5. Fourier sampling
  6. universal quantum Turing machine

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.