Recently a great deal of attention has been focused on quantum computation following a sequence of results [Bernstein and Vazirani, in Proc. 25th Annual ACM Symposium Theory Comput., 1993, pp. 11--20, SIAM J. Comput., 26 (1997), pp. 1277--1339], [Simon, in Proc. 35th Annual IEEE Symposium Foundations Comput. Sci., 1994, pp. 116--123, SIAM J. Comput., 26 (1997), pp. 1340--1349], [Shor, in Proc. 35th Annual IEEE Symposium Foundations Comput. Sci., 1994, pp. 124--134] suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor's result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of $\NP$ can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random with probability 1 the class $\NP$ cannot be solved on a quantum Turing machine (QTM) in time $o(2^{n/2})$. We also show that relative to a permutation oracle chosen uniformly at random with probability 1 the class $\NP \cap \coNP$ cannot be solved on a QTM in time $o(2^{n/3})$. The former bound is tight since recent work of Grover [in {\it Proc.\ $28$th Annual ACM Symposium Theory Comput.}, 1996] shows how to accept the class $\NP$ relative to any oracle on a quantum computer in time $O(2^{n/2})$.

  • [1]  László Babai and , Shlomo Moran, Arthur‐Merlin games: a randomized proof system, and a hierarchy of complexity classes, J. Comput. System Sci., 36 (1988), 254–276, 17th Annual ACM Symposium on the Theory of Computing (Providence, RI, 1985) 90b:68028 CrossrefISIGoogle Scholar

  • [2]  C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973), pp. 525–532. ibm IBMJAE 0018-8646 IBM J. Res. Dev. CrossrefISIGoogle Scholar

  • [3]  Charles Bennett and , John Gill, Relative to a random oracle A, PANPAco-NPA with probability 1, SIAM J. Comput., 10 (1981), 96–113 83a:68044 LinkISIGoogle Scholar

  • [4]  Ethan Bernstein and , Umesh Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997), 1411–1473 99a:68053 LinkISIGoogle Scholar

  • [5]  André Berthiaume and , Gilles Brassard, The quantum challenge to structural complexity theory, IEEE Comput. Soc. Press, Los Alamitos, CA, 1992, 132–137 94h:03074 Google Scholar

  • [6]  André Berthiaume and , Gilles Brassard, Oracle quantum computing, J. Modern Opt., 41 (1994), 2521–2535 95j:81017 CrossrefISIGoogle Scholar

  • [7]  Google Scholar

  • [8]  Google Scholar

  • [9]  D. Deutsch, Quantum theory, the Church‐Turing principle and the universal quantum computer, Proc. Roy. Soc. London Ser. A, 400 (1985), 97–117 87a:81017 CrossrefISIGoogle Scholar

  • [10]  D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425 (1989), 73–90 90k:81023 CrossrefISIGoogle Scholar

  • [11]  David Deutsch and , Richard Jozsa, Rapid solution of problems by quantum computation, Proc. Roy. Soc. London Ser. A, 439 (1992), 553–558 94d:81011 CrossrefISIGoogle Scholar

  • [12]  Richard Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1981/82), 467–488, Physics of computation, Part II (Dedham, Mass., 1981) 658311 CrossrefISIGoogle Scholar

  • [13]  Lov Grover, A fast quantum mechanical algorithm for database search, ACM, New York, 1996, 212–219 1427516 Google Scholar

  • [14]  Google Scholar

  • [15]  Google Scholar

  • [16]  ISIGoogle Scholar

  • [17]  Andrew Yao, Quantum circuit complexity, IEEE Comput. Soc. Press, Los Alamitos, CA, 1993, 352–361 1328432 Google Scholar