Abstract

We propose a method for the stabilization of quantum computations (including quantum state storage). The method is based on the operation of projection into $\cal SYM$, the symmetric subspace of the full state space of R redundant copies of the computer. We describe an efficient algorithm and quantum network effecting $\cal SYM$--projection and discuss the stabilizing effect of the proposed method in the context of unitary errors generated by hardware imprecision, and nonunitary errors arising from external environmental interaction. Finally, limitations of the method are discussed.

MSC codes

  1. 68
  2. 81

Keywords

  1. quantum computation
  2. error correction

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. Papadimitriou (1994), Computational Complexity, Addison–Wesley, Reading, MA.
2.
D. Deutsch (1993), The Quantum Theory of Computation, talk presented at the Rank Prize Funds Mini–Symposium on Quantum Communication and Cryptography, Broadway, England.
3.
A. Berthiaume, D. Deutsch, and R. Jozsa (1994), The stabilization of quantum computations, in Proc. Workshop Physics Computation, PhysComp94, IEEE Computer Society Press, Los Alamitos, CA, pp. 60–62.
4.
Wojciech Zurek, Environment‐induced decoherence and the transition from quantum to classical, Proceedings of the International Symposium on Quantum Physics and the Universe (Tokyo, 1992), Vol. 37, 1993, 185–196
5.
Rolf Landauer, Is quantum mechanics useful?, Philos. Trans. Roy. Soc. London Ser. A, 353 (1995), 367–376
6.
G. M. Palma, K.‐A. Suominen, and A. Ekert (1996), Quantum computation and dissipation, Proc. Roy. Soc. London Ser. A, 452, pp. 567–584.
7.
Peter Shor, Algorithms for quantum computation: discrete logarithms and factoring, IEEE Comput. Soc. Press, Los Alamitos, CA, 1994, 124–134
8.
Artur Ekert, Richard Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Modern Phys., 68 (1996), 733–753
9.
P. Shor (1995), Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 52, pp. R2493–R2496.
10.
Andrew Steane, Multiple‐particle interference and quantum error correction, Proc. Roy. Soc. London Ser. A, 452 (1996), 2551–2577
11.
R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek (1996), Perfect quantum error correction code, Phys. Rev. Lett., 77, pp. 198–201.
12.
A. Ekert and C. Macchiavello (1996), Quantum error correction and communication, Phys. Rev. Lett., 77, pp. 2585–2588.
13.
A. Calderbank and P. Shor (1996), Good quantum error correcting codes exist, Phys. Rev. A, 54, pp. 1098–1106.
14.
S. Lang (1993), Algebra, 3rd ed., Addison–Wesley, Reading, MA.
15.
A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa (1995), Conditional quantum dynamics and logic gates, Phys. Rev. Lett., 74, pp. 4083–4087.
16.
Asher Peres, Quantum theory: concepts and methods, Fundamental Theories of Physics, Vol. 57, Kluwer Academic Publishers Group, 1993xiv+446
17.
A. Peres (1988), How to differentiate betweennon‐orthogonal states, Phys. Lett. A, 128, pp. 19–20.
18.
C. A. Fuchs and A. Peres (1996), Quantum state disturbance versus information gain: Uncertainty relations for quantum information, Phys. Rev. A, 53, pp. 2038–2045.
19.
W. K. Wootters and W. Zurek (1982), A single quantum cannot be cloned, Nature, 299, pp. 802–803.
20.
Tsuyoshi Uehara, Introduction to the theory of error‐correcting codes, Sūrikaisekikenkyūsho Kōkyūroku, (1998), 137–144, Number theory and its applications (Japanese) (Kyoto, 1997)
21.
Dorit Aharonov, private communication, 1995.
22.
R. Penrose and W. Rindler (1984), Spinors and Spacetime, Vol. 1, Appendix, Cambridge University Press, London.
23.
Donald Knuth, The art of computer programming. Vol. 2, Addison‐Wesley Publishing Co., Reading, Mass., 1981xiii+688, Seminumerical algorithms; Addison‐Wesley Series in Computer Science and Information Processing

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1541 - 1557
ISSN (online): 1095-7111

History

Published online: 28 July 2006

MSC codes

  1. 68
  2. 81

Keywords

  1. quantum computation
  2. error correction

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media