The maximum agreement subtree problem is the following. Given two rooted trees whose leaves are drawn from the same set of items (e.g., species), find the largest subset of these items so that the portions of the two trees restricted to these items are isomorphic. We consider the case which occurs frequently in practice, i.e., the case when the trees are binary, and give an O(nlog n) time algorithm for this problem.

  • [1]  Amihood Amir and , Dmitry Keselman, Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithms, SIAM J. Comput., 26 (1997), 1656–1669 10.1137/S0097539794269461 98i:68109 LinkISIGoogle Scholar

  • [2]  Google Scholar

  • [3]  Google Scholar

  • [4]  M. Farach, T. Przytycka and , and M. Thorup, Agreement of many bounded degree evolutionary trees, Inform. Process. Lett., 55 (1995), pp. 297–301. ipl IFPLAT 0020-0190 Inf. Process. Lett. CrossrefISIGoogle Scholar

  • [5]  Martin Farach and , Mikkel Thorup, Fast comparison of evolutionary trees, Inform. and Comput., 123 (1995), 29–37 10.1006/inco.1995.1155 96j:92013 CrossrefISIGoogle Scholar

  • [6]  Martin Farach and , Mikkel Thorup, Sparse dynamic programming for evolutionary‐tree comparison, SIAM J. Comput., 26 (1997), 210–230 10.1137/S0097539794262422 97m:68093 LinkISIGoogle Scholar

  • [7]  C. R. Finden and  and A. D. Gordon, Obtaining common pruned trees, J. Classification, 2 (1985), pp. 255–276. CrossrefISIGoogle Scholar

  • [8]  Google Scholar

  • [9]  Google Scholar

  • [10]  Dov Harel and , Robert Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput., 13 (1984), 338–355 85f:68081 LinkISIGoogle Scholar

  • [11]  Ming‐Yang Kao, Tree contractions and evolutionary trees, SIAM J. Comput., 27 (1998), 1592–1616 10.1137/S0097539795283504 2000a:05063 LinkISIGoogle Scholar

  • [12]  E. Kubicka, G. Kubicki and , and F. R. McMorris, An algorithm to find agreement subtrees, J. Classification, 12 (1995), pp. 91–100. CrossrefISIGoogle Scholar

  • [13]  K. Mehlhorn, A best possible bound for the weighted path length of binary search trees, SIAM J. Computing, 6 (1977), pp. 235–239. sim SMJCAT 0097-5397 SIAM J. Comput. LinkGoogle Scholar

  • [14]  Mike Steel and , Tandy Warnow, Kaikoura tree theorems: computing the maximum agreement subtree, Inform. Process. Lett., 48 (1993), 77–82 10.1016/0020-0190(93)90181-8 95d:68066 CrossrefISIGoogle Scholar