On Stability of Bang-Bang Type Controls

From the theory of nonlinear optimal control problems it is known that the solution stability w.r.t. data perturbations and conditions for strict local optimality are closely related facts. For important classes of control problems, sufficient optimality conditions can be formulated as a combination of the independence of active constraints' gradients and certain coercivity criteria. In the case of discontinuous controls, however, common pointwise coercivity approaches may fail.

In the paper, we consider sufficient optimality conditions for strong local minimizers which make use of an integrated Hamilton--Jacobi inequality. In the case of linear system dynamics, we show that the solution stability (including the switching points localization) is ensured under relatively mild regularity assumptions on the switching function zeros. For the objective functional, local quadratic growth estimates in L1 sense are provided. An example illustrates stability as well as instability effects in case the regularity condition is violated.

  • [1]  A. Agrachëv and , R. Gamkrelidze, Symplectic geometry for optimal control, Monogr. Textbooks Pure Appl. Math., Vol. 133, Dekker, New York, 1990, 263–277 91f:49032 Google Scholar

  • [2]  A. Agrachev, P. Dzedza and , Zh. Stefani, Strong minima in optimal control, Tr. Mat. Inst. Steklova, 220 (1998), 8–26 2002c:49034 Google Scholar

  • [3]  Andrei Agrachev, Gianna Stefani and , Pierluigi Zezza, Symplectic methods for strong local optimality in the bang‐bang case, World Sci. Publishing, River Edge, NJ, 2002, 169–181 2003c:49034 Google Scholar

  • [4]  Arthur Bryson and , Yu Ho, Applied optimal control, Hemisphere Publishing Corp. Washington, D. C., 1975xiv+481, Optimization, estimation, and control; Revised printing 56:4953 Google Scholar

  • [5]  Frank Clarke and , Vera Zeidan, Sufficiency andthe Jacobi condition in the calculus of variations, Canad. J. Math., 38 (1986), 1199–1209 88f:49018 CrossrefISIGoogle Scholar

  • [6]  A. Dontchev and , William Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2001), 173–203 2001f:49058 CrossrefISIGoogle Scholar

  • [7]  A. Dontchev and , K. Malanowski, A characterization of Lipschitzian stability in optimal control, Chapman & Hall/CRC Res. Notes Math., Vol. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, 62–76 2001b:49037 Google Scholar

  • [8]  Google Scholar

  • [9]  Ursula Felgenhauer, On smoothness properties and approximability of optimal control functions, Ann. Oper. Res., 101 (2001), 23–42, Optimization with data perturbations, II 2002i:49035 CrossrefISIGoogle Scholar

  • [10]  Google Scholar

  • [11]  U. Felgenhauer, Structural properties and approximation of optimal controls, Nonlinear Anal., 47 (2001), pp. 1869–1880. CrossrefISIGoogle Scholar

  • [12]  U. Felgenhauer, Weak and strong optimality conditions for constrained control problems with discontinuous control, J. Optim. Theory Appl., 110 (2001), 361–387 10.1023/A:1017531530509 2002d:49028 CrossrefISIGoogle Scholar

  • [13]  R. Klötzler, On a general concept of duality in optimal control, Lecture Notes in Math., Vol. 703, Springer, Berlin, 1979, 189–196 80g:49019 Google Scholar

  • [14]  Rolf Klötzler and , Sabine Pickenhain, Pontryagin’s maximum principle for multidimensional control problems, Internat. Ser. Numer. Math., Vol. 111, Birkhäuser, Basel, 1993, 21–30 95g:49031 Google Scholar

  • [15]  Urszula Ledzewicz and , Heinz Schättler, High‐order approximations for abnormal bang‐bang extremals, Chapman & Hall/CRC Res. Notes Math., Vol. 396, Chapman & Hall/CRC, Boca Raton, FL, 1999, 126–134 2000b:49038 Google Scholar

  • [16]  K. Malanowski, Two‐norm approach in stability and sensitivity analysis of optimization and optimal control problems, Adv. Math. Sci. Appl., 2 (1993), 397–443 94g:49062 Google Scholar

  • [17]  K. Malanowski, Stability and sensitivity analysis of solutions to infinite‐dimensional optimization problems, Lecture Notes in Control and Inform. Sci., Vol. 197, Springer, London, 1994, 109–127 1294149 Google Scholar

  • [18]  K. Malanowski, Stability and sensitivity of solutions to nonlinear optimal control problems, Appl. Math. Optim., 32 (1995), 111–141 96c:49041 CrossrefISIGoogle Scholar

  • [19]  Kazimierz Malanowski, Stability analysis of solutions to parametric optimal control problems, Approx. Optim., Vol. 9, Lang, Frankfurt am Main, 1997, 227–244 98a:49041 Google Scholar

  • [20]  Kazimierz Malanowski, Christof Büskens and , Helmut Maurer, Convergence of approximations to nonlinear optimal control problems, Lecture Notes in Pure and Appl. Math., Vol. 195, Dekker, New York, 1998, 253–284 98f:49033 Google Scholar

  • [21]  Kazimierz Malanowski and , Helmut Maurer, Sensitivity analysis for parametric control problems with control‐state constraints, Comput. Optim. Appl., 5 (1996), 253–283 97d:49028 CrossrefGoogle Scholar

  • [22]  Kazimierz Malanowski and , Helmut Maurer, Sensitivity analysis for optimal control problems subject to higher order state constraints, Ann. Oper. Res., 101 (2001), 43–73, Optimization with data perturbations, II 2002f:49052 CrossrefISIGoogle Scholar

  • [23]  Kazimierz Malanowski and , Helmut Maurer, Sensitivity analysis for state constrained optimal control problems, Discrete Contin. Dynam. Systems, 4 (1998), 241–272 2000a:49051 CrossrefGoogle Scholar

  • [24]  Google Scholar

  • [25]  Helmut Maurer and , Hans Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach, SIAMJ. Control Optim., 41 (2002), 380–403 10.1137/S0363012900377419 1920264 LinkISIGoogle Scholar

  • [26]  H. Maurer and , S. Pickenhain, Second‐order sufficient conditions for control problems with mixed control‐state constraints, J. Optim. Theory Appl., 86 (1995), 649–667 96e:49028 CrossrefISIGoogle Scholar

  • [27]  A. Milyutin and , N. Osmolovskii, Calculus of variations and optimal control, Translations of Mathematical Monographs, Vol. 180, American Mathematical Society, 1998xii+372, Translated from the Russian manuscript by Dimitrii Chibisov 99g:49002 CrossrefGoogle Scholar

  • [28]  John Noble and , Heinz Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory, J. Math. Anal. Appl., 269 (2002), 98–128 10.1016/S0022-247X(02)00008-2 1907876 CrossrefISIGoogle Scholar

  • [29]  Nikolai˘ Osmolovskii˘, Quadratic conditions for nonsingular extremals in optimal control (a theoretical treatment), Russian J. Math. Phys., 2 (1994), 487–516 96f:49026 Google Scholar

  • [30]  Nikolai Osmolovskii, Quadratic conditions for nonsingular extremals in optimal control (examples), Russian J. Math. Phys., 5 (1997), 373–388 99j:49041 ISIGoogle Scholar

  • [31]  N. Osmolovskii, Second‐order conditions for broken extremal, Chapman & Hall/CRC Res. Notes Math., Vol. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, 198–216 2000i:49028 Google Scholar

  • [32]  S. Pickenhain, Sufficiency conditions for weak local minima in multidimensional optimal control problems with mixed control‐state restrictions, Z. Anal. Anwendungen, 11 (1992), 559–568 95a:49053 CrossrefGoogle Scholar

  • [33]  Google Scholar

  • [34]  S. Pickenhain and , K. Tammer, Sufficient conditions for local optimality in multidimensional control problems with state restrictions, Z. Anal. Anwendungen, 10 (1991), 397–405 92m:49033 CrossrefGoogle Scholar

  • [35]  Andrei Sarychev, First‐ and second‐order sufficient optimality conditions for bang‐bang controls, SIAM J. Control Optim., 35 (1997), 315–340 10.1137/S0363012993246191 97k:49039 LinkISIGoogle Scholar

  • [36]  Heinz Schättler, On the local structure of time‐optimal bang‐bang trajectories in R3, SIAM J. Control Optim., 26 (1988), 186–204 89a:49024 LinkISIGoogle Scholar