Abstract

From the theory of nonlinear optimal control problems it is known that the solution stability w.r.t. data perturbations and conditions for strict local optimality are closely related facts. For important classes of control problems, sufficient optimality conditions can be formulated as a combination of the independence of active constraints' gradients and certain coercivity criteria. In the case of discontinuous controls, however, common pointwise coercivity approaches may fail.
In the paper, we consider sufficient optimality conditions for strong local minimizers which make use of an integrated Hamilton--Jacobi inequality. In the case of linear system dynamics, we show that the solution stability (including the switching points localization) is ensured under relatively mild regularity assumptions on the switching function zeros. For the objective functional, local quadratic growth estimates in L1 sense are provided. An example illustrates stability as well as instability effects in case the regularity condition is violated.

MSC codes

  1. 49K40
  2. 49N15
  3. 49N10

Keywords

  1. optimal control
  2. optimality conditions
  3. strong local minimality
  4. control stability
  5. solution structure stability

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Agrachëv, R. Gamkrelidze, Symplectic geometry for optimal control, Monogr. Textbooks Pure Appl. Math., Vol. 133, Dekker, New York, 1990, 263–277
2.
A. Agrachev, P. Dzedza, Zh. Stefani, Strong minima in optimal control, Tr. Mat. Inst. Steklova, 220 (1998), 8–26
3.
Andrei Agrachev, Gianna Stefani, Pierluigi Zezza, Symplectic methods for strong local optimality in the bang‐bang case, World Sci. Publishing, River Edge, NJ, 2002, 169–181
4.
Arthur Bryson, Jr., Yu Ho, Applied optimal control, Hemisphere Publishing Corp. Washington, D. C., 1975xiv+481, Optimization, estimation, and control; Revised printing
5.
Frank Clarke, Vera Zeidan, Sufficiency andthe Jacobi condition in the calculus of variations, Canad. J. Math., 38 (1986), 1199–1209
6.
A. Dontchev, William Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2001), 173–203
7.
A. Dontchev, K. Malanowski, A characterization of Lipschitzian stability in optimal control, Chapman & Hall/CRC Res. Notes Math., Vol. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, 62–76
8.
U. Felgenhauer, Diskretisierung von Steuerungsproblemen unter stabilen Optimalitätsbedingungen, Habilitation thesis, Brandenburgische Technische Universität Cottbus, 1999.
9.
Ursula Felgenhauer, On smoothness properties and approximability of optimal control functions, Ann. Oper. Res., 101 (2001), 23–42, Optimization with data perturbations, II
10.
U. Felgenhauer, Stability and local growth near bounded‐strong local optimal controls, in System Modelling and Optimization XX, Proceedings of the 20th IFIP TC7 Conference, Trier 2001, Kluwer Academic Publishers, Dordrecht, The Netherlands, to appear.
11.
U. Felgenhauer, Structural properties and approximation of optimal controls, Nonlinear Anal., 47 (2001), pp. 1869–1880.
12.
U. Felgenhauer, Weak and strong optimality conditions for constrained control problems with discontinuous control, J. Optim. Theory Appl., 110 (2001), 361–387
13.
R. Klötzler, On a general concept of duality in optimal control, Lecture Notes in Math., Vol. 703, Springer, Berlin, 1979, 189–196
14.
Rolf Klötzler, Sabine Pickenhain, Pontryagin’s maximum principle for multidimensional control problems, Internat. Ser. Numer. Math., Vol. 111, Birkhäuser, Basel, 1993, 21–30
15.
Urszula Ledzewicz, Heinz Schättler, High‐order approximations for abnormal bang‐bang extremals, Chapman & Hall/CRC Res. Notes Math., Vol. 396, Chapman & Hall/CRC, Boca Raton, FL, 1999, 126–134
16.
K. Malanowski, Two‐norm approach in stability and sensitivity analysis of optimization and optimal control problems, Adv. Math. Sci. Appl., 2 (1993), 397–443
17.
K. Malanowski, Stability and sensitivity analysis of solutions to infinite‐dimensional optimization problems, Lecture Notes in Control and Inform. Sci., Vol. 197, Springer, London, 1994, 109–127
18.
K. Malanowski, Stability and sensitivity of solutions to nonlinear optimal control problems, Appl. Math. Optim., 32 (1995), 111–141
19.
Kazimierz Malanowski, Stability analysis of solutions to parametric optimal control problems, Approx. Optim., Vol. 9, Lang, Frankfurt am Main, 1997, 227–244
20.
Kazimierz Malanowski, Christof Büskens, Helmut Maurer, Convergence of approximations to nonlinear optimal control problems, Lecture Notes in Pure and Appl. Math., Vol. 195, Dekker, New York, 1998, 253–284
21.
Kazimierz Malanowski, Helmut Maurer, Sensitivity analysis for parametric control problems with control‐state constraints, Comput. Optim. Appl., 5 (1996), 253–283
22.
Kazimierz Malanowski, Helmut Maurer, Sensitivity analysis for optimal control problems subject to higher order state constraints, Ann. Oper. Res., 101 (2001), 43–73, Optimization with data perturbations, II
23.
Kazimierz Malanowski, Helmut Maurer, Sensitivity analysis for state constrained optimal control problems, Discrete Contin. Dynam. Systems, 4 (1998), 241–272
24.
H. Maurer, Second order sufficient conditions for control problems with free final time, in Proceedings of the 3rd European Control Conference, Rome, 1995, A. Isidori et al., eds., 1995, pp. 3602–3606.
25.
Helmut Maurer, Hans Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach, SIAMJ. Control Optim., 41 (2002), 380–403
26.
H. Maurer, S. Pickenhain, Second‐order sufficient conditions for control problems with mixed control‐state constraints, J. Optim. Theory Appl., 86 (1995), 649–667
27.
A. Milyutin, N. Osmolovskii, Calculus of variations and optimal control, Translations of Mathematical Monographs, Vol. 180, American Mathematical Society, 1998xii+372, Translated from the Russian manuscript by Dimitrii Chibisov
28.
John Noble, Heinz Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory, J. Math. Anal. Appl., 269 (2002), 98–128
29.
Nikolai˘ Osmolovskii˘, Quadratic conditions for nonsingular extremals in optimal control (a theoretical treatment), Russian J. Math. Phys., 2 (1994), 487–516
30.
Nikolai Osmolovskii, Quadratic conditions for nonsingular extremals in optimal control (examples), Russian J. Math. Phys., 5 (1997), 373–388
31.
N. Osmolovskii, Second‐order conditions for broken extremal, Chapman & Hall/CRC Res. Notes Math., Vol. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, 198–216
32.
S. Pickenhain, Sufficiency conditions for weak local minima in multidimensional optimal control problems with mixed control‐state restrictions, Z. Anal. Anwendungen, 11 (1992), 559–568
33.
S. Pickenhain, Duality in optimal control with first order differential equations, in Encyclopedia of Optimization, Vol. I, C. A. Floudas and P. M. Pardalos, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, pp. 472–477.
34.
S. Pickenhain, K. Tammer, Sufficient conditions for local optimality in multidimensional control problems with state restrictions, Z. Anal. Anwendungen, 10 (1991), 397–405
35.
Andrei Sarychev, First‐ and second‐order sufficient optimality conditions for bang‐bang controls, SIAM J. Control Optim., 35 (1997), 315–340
36.
Heinz Schättler, On the local structure of time‐optimal bang‐bang trajectories in R3, SIAM J. Control Optim., 26 (1988), 186–204

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 1843 - 1867
ISSN (online): 1095-7138

History

Published online: 26 July 2006

MSC codes

  1. 49K40
  2. 49N15
  3. 49N10

Keywords

  1. optimal control
  2. optimality conditions
  3. strong local minimality
  4. control stability
  5. solution structure stability

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media