Asymptotic Controllability and Exponential Stabilization of Nonlinear Control Systems at Singular Points

Abstract

We discuss the relation between exponential stabilization and asymptotic controllability of nonlinear control systems with constrained control range at singular points. Using a discounted optimal control approach, we construct discrete feedback laws minimizing the Lyapunov exponent of the linearization. Thus we obtain an equivalence result between uniform exponential controllability and uniform exponential stabilizability by means of a discrete feedback law.

MSC codes

  1. 93D15
  2. 93D22

Keywords

  1. stabilization
  2. nonlinear control systems
  3. singular points
  4. Lyapunov exponents
  5. discounted optimal control problems
  6. discrete feedback control

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Piermarco Cannarsa, Halina Frankowska, Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim., 29 (1991), 1322–1347
2.
I. Capuzzo Dolcetta, On a discrete approximation of the Hamilton‐Jacobi equation of dynamic programming, Appl. Math. Optim., 10 (1983), 367–377
3.
I. Capuzzo‐Dolcetta, H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984), 161–181
4.
R. Chabour, G. Sallet, J.‐C. Vivalda, Stabilization of nonlinear systems: a bilinear approach, Math. Control Signals Systems, 6 (1993), 224–246
5.
Francis Clarke, Yuri Ledyaev, Eduardo Sontag, Andrei Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394–1407
6.
Fritz Colonius, Wolfgang Kliemann, Linear control semigroups acting on projective space, J. Dynam. Differential Equations, 5 (1993), 495–528
7.
Fritz Colonius, Wolfgang Kliemann, Minimal and maximal Lyapunov exponents of bilinear control systems, J. Differential Equations, 101 (1993), 232–275
8.
Fritz Colonius, Wolfgang Kliemann, Asymptotic null controllability of bilinear systems, Banach Center Publ., Vol. 32, Polish Acad. Sci., Warsaw, 1995, 139–148
9.
M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim., 15 (1987), pp. 1–13.
Corrigenda, IBID, 23 (1991), pp. 213–214.
10.
Halina Frankowska, Optimal trajectories associated with a solution of the contingent Hamilton‐Jacobi equation, Appl. Math. Optim., 19 (1989), 291–311
11.
Lars Grüne, Discrete feedback stabilization of semilinear control systems, ESAIM Contrôle Optim. Calc. Var., 1 (1995/96), 207–224
12.
Lars Grüne, Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 34 (1996), 2024–2050
13.
Lars Grüne, An adaptive grid scheme for the discrete Hamilton‐Jacobi‐Bellman equation, Numer. Math., 75 (1997), 319–337
14.
L. Grüne, Discrete feedback stabilization of nonlinear control systems at a singular point, [4] in Proceedings of the 4th European Control Conference, Brussels, Belgium, 1997, lsqb;4] CD‐ROM; European Union Control Association (EUCA), 1997, http://www.auto.ucl.ac.be/INMA/ECC97.html.
15.
W. Hahn, Stability of Motion, Springer‐Verlag, Heidelberg, 1967.
16.
H. Hermes, On a stabilizing feedback attitude control, J. Optim. Theory Appl., 31 (1980), 373–384
17.
H. Hermes, On the synthesis of a stabilizing feedback control via Lie algebraic methods, SIAM J. Control Optim., 18 (1980), 352–361
18.
N. Krasovskii˘, A. Subbotin, Game‐theoretical control problems, Springer Series in Soviet Mathematics, Springer‐Verlag, 1988xii+517, Translated from the Russian by Samuel Kotz
19.
G. Papakov, A. Tarasv, A. Uspenskii˘, Numerical approximations of generalized solutions of Hamilton‐Jacobi equations, Prikl. Mat. Mekh., 60 (1996), 570–581
20.
Eduardo Sontag, Nonlinear regulation: the piecewise linear approach, IEEE Trans. Automat. Control, 26 (1981), 346–358
21.
Eduardo Sontag, Mathematical control theory, Texts in Applied Mathematics, Vol. 6, Springer‐Verlag, 1998xvi+531, Deterministic finite‐dimensional systems
22.
E. D. Sontagt, Feedback stabilization using two‐hidden‐layer nets, IEEE Trans. Neural Networks, 3 (1992), pp. 981–990.
23.
M. Vidyasagar, Nonlinear System Analysis, Prentice‐Hall, Englewood Cliffs, NJ, 1993.
24.
J. Zabczyk, Some comments on stabilizability, Appl. Math. Optim., 19 (1989), 1–9

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 1485 - 1503
ISSN (online): 1095-7138

History

Published online: 26 July 2006

MSC codes

  1. 93D15
  2. 93D22

Keywords

  1. stabilization
  2. nonlinear control systems
  3. singular points
  4. Lyapunov exponents
  5. discounted optimal control problems
  6. discrete feedback control

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media