Abstract

We show that for any asymptotically controllable homogeneous system in euclidean space (not necessarily Lipschitz at the origin) there exists a homogeneous control Lyapunov function and a homogeneous, possibly discontinuous state feedback law stabilizing the corresponding sampled closed loop system. If the system satisfies the usual local Lipschitz condition on the whole space we obtain semiglobal stability of the sampled closed loop system for each sufficiently small fixed sampling rate. If the system satisfies a global Lipschitz condition we obtain global exponential stability for each sufficiently small fixed sampling rate. The control Lyapunov function and the feedback are based on the Lyapunov exponents of a suitable auxiliary system and admit a numerical approximation.

MSC codes

  1. 93D15
  2. 93D22
  3. 93D30
  4. 93D20

Keywords

  1. homogeneous system
  2. state feedback stabilization
  3. control Lyapunov functions
  4. Lyapunov exponents

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Martino Bardi, Italo Capuzzo‐Dolcetta, Optimal control and viscosity solutions of Hamilton‐Jacobi‐Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., 1997xviii+570, With appendices by Maurizio Falcone and Pierpaolo Soravia
2.
R. Brockett, Asymptotic stability and feedback stabilization, Progr. Math., Vol. 27, Birkhäuser Boston, Boston, MA, 1983, 181–191
3.
Frank Clarke, Methods of dynamic and nonsmooth optimization, CBMS‐NSF Regional Conference Series in Applied Mathematics, Vol. 57, Society for Industrial and Applied Mathematics (SIAM), 1989vi+90
4.
F. Clarke, Y. Ledyaev, L. Rifford, and R. Stern, Feedback stabilization and Lyapunov functions, SIAM J. Control Optim., to appear.
5.
Francis Clarke, Yuri Ledyaev, Eduardo Sontag, Andrei Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394–1407
6.
Fritz Colonius, Wolfgang Kliemann, Minimal and maximal Lyapunov exponents of bilinear control systems, J. Differential Equations, 101 (1993), 232–275
7.
F. Colonius and W. Kliemann, The Dynamics of Control, Birk‐häuser, Boston, 1999.
8.
Lars Grüne, Discrete feedback stabilization of semilinear control systems, ESAIM Contrôle Optim. Calc. Var., 1 (1995/96), 207–224
9.
Lars Grüne, Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 34 (1996), 2024–2050
10.
L. Grüne, Discrete feedback stabilization of nonlinear control systems at a singular point, in Proceedings of the 4th European Control Conference, Brussels, 1997.
11.
Lars Grüne, Asymptotic controllability and exponential stabilization of nonlinear control systems at singular points, SIAM J. Control Optim., 36 (1998), 1485–1503
12.
L. Grüne, A uniform exponential spectrum for linear flows on vector bundles, J. Dynam. Differential Equations, to appear.
13.
H. Hermes, On stabilizing feedback attitude control, J. Optim. Theory Appl., 31 (1980), pp. 373–384.
14.
H. Hermes, On the synthesis of a stabilizing feedback control via Lie algebraic methods, SIAM J. Control Optim., 18 (1980), 352–361
15.
Henry Hermes, Nilpotent and high‐order approximations of vector field systems, SIAM Rev., 33 (1991), 238–264
16.
Henry Hermes, Homogeneous feedback controls for homogeneous systems, Systems Control Lett., 24 (1995), 7–11
17.
Henry Hermes, Smooth homogeneous asymptotically stabilizing feedback controls, ESAIM Control Optim. Calc. Var., 2 (1997), 13–32
18.
A. Iggidr, J.‐C. Vivalda, Global stabilization of homogeneous polynomial systems in Rn, Nonlinear Anal., 18 (1992), 1181–1186
19.
Matthias Kawski, Homogeneous feedback stabilization, Progr. Systems Control Theory, Vol. 7, Birkhäuser Boston, Boston, MA, 1991, 464–471
20.
Yuri Ledyaev, Eduardo Sontag, A Lyapunov characterization of robust stabilization, Nonlinear Anal., 37 (1999), 813–840
21.
Lionel Rosier, Homogeneous Lyapunov function for homogeneous continuous vector fields, Systems Control Lett., 19 (1992), 467–473
22.
E. Ryan, Universal stabilization of a class of nonlinear systems with homogeneous vector fields, Systems Control Lett., 26 (1995), 177–184
23.
R. Sepulchre, D. Aeyels, Homogeneous Lyapunov functions and necessary conditions for stabilization, Math. Control Signals Systems, 9 (1996), 34–58
24.
Rodolphe Sepulchre, Dirk Aeyels, Stabilizability does not imply homogeneous stabilizability for controllable homogeneous systems, SIAM J. Control Optim., 34 (1996), 1798–1813
25.
Eduardo Sontag, Nonlinear regulation: the piecewise linear approach, IEEE Trans. Automat. Control, 26 (1981), 346–358
26.
Eduardo Sontag, Stability and stabilization: discontinuities and the effect of disturbances, NATO Sci. Ser. C Math. Phys. Sci., Vol. 528, Kluwer Acad. Publ., Dordrecht, 1999, 551–598
27.
J. Tsinias, Remarks on feedback stabilizability of homogeneous systems, Control Theory Adv. Tech., 6 (1990), 533–542

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 1288 - 1308
ISSN (online): 1095-7138

History

Published online: 26 July 2006

MSC codes

  1. 93D15
  2. 93D22
  3. 93D30
  4. 93D20

Keywords

  1. homogeneous system
  2. state feedback stabilization
  3. control Lyapunov functions
  4. Lyapunov exponents

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media