Abstract

We propose new algorithms for solving n x n banded Toeplitz systems with bandwidth m. If the function associated with the Toeplitz matrix has no zero in the unit circle, then $O(n\log m + m\log ^2 m\log\log \epsilon^{-1})$ arithmetic operations (ops) are sufficient to approximate the solution of the system up to within the error $\epsilon$; otherwise the cost becomes $O(n\log m +m\log^2 m\log {n\over m})$ ops. Here $m=o(n)$ and $n>\log \epsilon^{-1}$. Some applications are presented. The methods can be applied to infinite and bi-infinite systems and to block matrices.

MSC codes

  1. 65F05
  2. 65F10
  3. 15A23

Keywords

  1. banded matrices
  2. Toeplitz matrices
  3. displacement rank
  4. cyclic reduction
  5. Graeffe's method

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Gregory Ammar, William Gragg, Numerical experience with a superfast real Toeplitz solver, Linear Algebra Appl., 121 (1989), 185–206, Linear algebra and applications (Valencia, 1987)
2.
O. Axelsson and G. Lindskög, The rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 52 (1986), pp. 499–523.
3.
D. Bini, On a Class of Matrices Related to Toeplitz Matrices, Tech. Report 83‐5, SUNY at Albany, Albany, NY, 1983.
4.
Dario Bini, Parallel solution of certain Toeplitz linear systems, SIAM J. Comput., 13 (1984), 268–276
5.
D. Bini, Matrix structures in parallel matrix computations, Calcolo, 25 (1988), 37–51
6.
Dario Bini, Milvio Capovani, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl., 52/53 (1983), 99–126
7.
D. Bini and F. Di Benedetto, A new preconditioner for the parallel solution of positive definite Toeplitz systems, in Proceedings of the 2nd Annual SPAA, Crete, Greece, ACM Press, 1990, pp. 220–223.
8.
D. Bini and B. Meini, On cyclic reduction applied to a class of Toeplitz‐like matrices arising in queueing problems, in Computations with Markov Chains, W. J. Stewart, ed., Kluwer Academic Publisher, Norwell, MA, 1995, pp. 21–38.
9.
Dario Bini, Beatrice Meini, On the solution of a nonlinear matrix equation arising in queueing problems, SIAM J. Matrix Anal. Appl., 17 (1996), 906–926
10.
Dario Bini, Beatrice Meini, Improved cyclic reduction for solving queueing problems, Numer. Algorithms, 15 (1997), 57–74
11.
Dario Bini, Beatrice Meini, Inverting block Toeplitz matrices in block Hessenberg form by means of displacement operators: application to queueing problems, Linear Algebra Appl., 272 (1998), 1–16
12.
D. Bini and V. Pan, Matrix and Polynomial Computations, Vol. 1: Fundamental Algorithms, Birkhäuser, Boston, 1994.
13.
S. Bondeli, W. Gander, Cyclic reduction for special tridiagonal systems, SIAM J. Matrix Anal. Appl., 15 (1994), 321–330
14.
Raymond Chan, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal. Appl., 10 (1989), 542–550
15.
Raymond Chan, Michael Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482
16.
Michael Ng, Raymond Chan, Scientific applications of iterative Toeplitz solvers, Calcolo, 33 (1996), 249–267, Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)
17.
Raymond Chan, Ping Tang, Fast band‐Toeplitz preconditioners for Hermitian Toeplitz systems, SIAM J. Sci. Comput., 15 (1994), 164–171
18.
H. Gail, S. Hantler, B. Taylor, Non‐skip‐free M/G/1 and G/M/1 type Markov chains, Adv. in Appl. Probab., 29 (1997), 733–758
19.
G. Golub and C. van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1989.
20.
J. Grcar, A. Sameh, On certain parallel Toeplitz linear system solvers, SIAM J. Sci. Statist. Comput., 2 (1981), 238–256
21.
U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd ed., Chelsea House, New York, 1984.
22.
Don Heller, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems, SIAM J. Numer. Anal., 13 (1976), 484–496
23.
Thomas Kailath, Ali Sayed, Displacement structure: theory and applications, SIAM Rev., 37 (1995), 297–386
24.
T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev., 20 (1978), pp. 106–119.
25.
Marcel Neuts, Matrix‐geometric solutions in stochastic models, Dover Publications Inc., 1994xiv+332, An algorithmic approach; Corrected reprint of the 1981 original
26.
Marcel Neuts, Structured stochastic matrices of M/G/1 type and their applications, Probability: Pure and Applied, Vol. 5, Marcel Dekker Inc., 1989xvi+510
27.
Alexandre Ostrowski, Recherches sur la méthode de Graeffe et les zéros des polynomes et des séries de Laurent, Acta Math., 72 (1940), 99–155
28.
Stefano Serra, Preconditioning strategies for asymptotically ill‐conditioned block Toeplitz systems, BIT, 34 (1994), 579–594
29.
S. Serra, Optimal, quasi‐optimal and superlinear preconditioners for asymptotically ill‐conditioned positive definite Toeplitz systems, Math. Comp., 66 (1997), pp. 651–665.
30.
Stefano Serra Capizzano, Toeplitz preconditioners constructed from linear approximation processes, SIAM J. Matrix Anal. Appl., 20 (1999), 446–465
31.
Jacques Rappaz, Marco Picasso, Introduction à l’analyse numérique, Mathématiques. [Mathematics], Presses Polytechniques et Universitaires Romandes, 1998x+256
32.
G. Strang, A proposal for Toeplitz matrix computations, Stud. Appl. Math., 74 (1986), pp. 171–176.
33.
Plamen Yalamov, Velisar Pavlov, Stability of the block cyclic reduction, Linear Algebra Appl., 249 (1996), 341–358

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 700 - 719
ISSN (online): 1095-7162

History

Published online: 31 July 2006

MSC codes

  1. 65F05
  2. 65F10
  3. 15A23

Keywords

  1. banded matrices
  2. Toeplitz matrices
  3. displacement rank
  4. cyclic reduction
  5. Graeffe's method

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media