Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method

Abstract

We describe new algorithms of the locally optimal block preconditioned conjugate gradient (LOBPCG) method for symmetric eigenvalue problems, based on a local optimization of a three-term recurrence, and suggest several other new methods. To be able to compare numerically different methods in the class, with different preconditioners, we propose a common system of model tests, using random preconditioners and initial guesses. As the "ideal" control algorithm, we advocate the standard preconditioned conjugate gradient method for finding an eigenvector as an element of the null-space of the corresponding homogeneous system of linear equations under the assumption that the eigenvalue is known. We recommend that every new preconditioned eigensolver be compared with this "ideal" algorithm on our model test problems in terms of the speed of convergence, costs of every iteration, and memory requirements. We provide such comparison for our LOBPCG method. Numerical results establish that our algorithm is practically as efficient as the ``ideal' algorithm when the same preconditioner is used in both methods. We also show numerically that the LOBPCG method provides approximations to first eigenpairs of about the same quality as those by the much more expensive global optimization method on the same generalized block Krylov subspace. We propose a new version of block Davidson's method as a generalization of the LOBPCG method. Finally, direct numerical comparisons with the Jacobi--Davidson method show that our method is more robust and converges almost two times faster.

MSC codes

  1. 65F15
  2. 65N25

Keywords

  1. symmetric eigenvalue problems
  2. preconditioning
  3. conjugate gradient methods
  4. the Lanczos method

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Luca Bergamaschi, Giuseppe Gambolati, Giorgio Pini, Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblem, Numer. Linear Algebra Appl., 4 (1997), 69–84
2.
Leonardo Borges, Suely Oliveira, A parallel Davidson‐type algorithm for several eigenvalues, J. Comput. Phys., 144 (1998), 727–748
3.
W. Bradbury, R. Fletcher, New iterative methods for solution of the eigenproblem, Numer. Math., 9 (1966), 259–267
4.
James Bramble, Joseph Pasciak, Andrew Knyazev, A subspace preconditioning algorithm for eigenvector/eigenvalue computation, Adv. Comput. Math., 6 (1996), 159–189
5.
E. R. Davidson, Matrix eigenvector methods, in Methods in Computational Molecular Physics, G. H. F. Direcksen and S. Wilson, eds., D. Reidel, Boston, MA, 1983, pp. 95–113.
6.
D. C. Dobson, An efficient method for band structure calculations in 2D photonic crystals, J. Comput. Phys., 149 (1999), pp. 363–376.
7.
David Dobson, Jayadeep Gopalakrishnan, Joseph Pasciak, An efficient method for band structure calculations in 3D photonic crystals, J. Comput. Phys., 161 (2000), 668–679
8.
Eugene D’yakonov, Optimization in solving elliptic problems, CRC Press, 1996xxviii+562, Translated from the 1989 Russian original; Translation edited and with a preface by Steve McCormick
9.
E. G. D’yakonov and A. V. Knyazev, Group iterative method for finding lower‐order eigenvalues, Moscow Univ. Comput. Math. Cybernet., No. 2, 1982, pp. 32–40.
10.
E. D’yakonov, A. Knyazev, On an iterative method for finding lower eigenvalues, Russian J. Numer. Anal. Math. Modelling, 7 (1992), 473–486
11.
Alan Edelman, Tomás Arias, Steven Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1999), 303–353
12.
A. Edelman, T. A. Arias, and S. T. Smith, Curvature in conjugate gradient eigenvalue computation with applications to Materials and Chemistry Calculations, in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, J. G. Lewis, ed., SIAM, Philadelphia, 1994, pp. 233–238.
13.
Y. Feng, D. Owen, Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems, Internat. J. Numer. Methods Engrg., 39 (1996), 2209–2229
14.
Diederik Fokkema, Gerard Sleijpen, Henk Van der Vorst, Jacobi‐Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), 94–125
15.
Giuseppe Gambolati, Flavio Sartoretto, Paolo Florian, An orthogonal accelerated deflation technique for large symmetric eigenproblems, Comput. Methods Appl. Mech. Engrg., 94 (1992), 13–23
16.
A. V. Knyazev, Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method, Technical report UCD‐CCM 149, Center for Computational Mathematics, University of Colorado at Denver, 2000.
17.
A. Knyazev, Vychislenie sobstvennykh znachenii i vektorov v setochnykh zadachakh: algoritmy i otsenki pogreshnosti, Akad. Nauk SSSR Otdel Vychisl. Mat., 1986, 188–
18.
A. Knyazev, Convergence rate estimates for iterative methods for a mesh symmetric eigenvalue problem, Soviet J. Numer. Anal. Math. Modelling, 2 (1987), 371–396, Translated from the Russian
19.
A. Knyazev, A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace, Internat. Ser. Numer. Math., Vol. 96, Birkhäuser, Basel, 1991, 143–154
20.
Andrew Knyazev, New estimates for Ritz vectors, Math. Comp., 66 (1997), 985–995
21.
Andrew Knyazev, Preconditioned eigensolvers—an oxymoron?, Electron. Trans. Numer. Anal., 7 (1998), 104–123, Large scale eigenvalue problems (Argonne, IL, 1997)
22.
A. V. Knyazev, Preconditioned eigensolvers: Practical algorithms, inTemplates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000, pp. 352–368. An extended version published as Technical report UCD‐CCM 143, Center for Computational Mathematics, University of Colorado, Denver, 1999.
23.
Andrew Knyazev, Alexander Skorokhodov, Preconditioned gradient‐type iterative methods in a subspace for partial generalized symmetric eigenvalue problems, SIAM J. Numer. Anal., 31 (1994), 1226–1239
24.
S. Lui, H. Keller, T. Kwok, Homotopy method for the large, sparse, real nonsymmetric eigenvalue problem, SIAM J. Matrix Anal. Appl., 18 (1997), 312–333
25.
Arnd Meyer, Modern algorithms for large sparse eigenvalue problems, Mathematical Research, Vol. 34, Akademie‐Verlag, 1987, 125–
26.
M. Mongeau and M. Torki, Computing Eigenelements of Real Symmetric Matrices via Optimization, Technical report 99.54, MIP University Paul Sabatier, Toulouse, France, 1999.
27.
Ronald Morgan, Davidson’s method and preconditioning for generalized eigenvalue problems, J. Comput. Phys., 89 (1990), 241–245
28.
K. Neymeyr, A geometric theory for preconditioned inverse iteration applied to a subspace, Math. Comp., submitted.
29.
Klaus Neymeyr, A geometric theory for preconditioned inverse iteration. I. Extrema of the Rayleigh quotient, Linear Algebra Appl., 322 (2001), 61–85
30.
Klaus Neymeyr, A geometric theory for preconditioned inverse iteration. II. Convergence estimates, Linear Algebra Appl., 322 (2001), 87–104
31.
Y. Notay, Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem, Numer. Linear Algebra Appl., to appear. Also available from http://homepages.ulb.ac.be/∼ynotay/.
32.
Evgueni Ovtchinnikov, Leonidas Xanthis, Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: a paradigm in three dimensions, Proc. Natl. Acad. Sci. USA, 97 (2000), 967–971
33.
E. E. Ovtchinnikov and L. S. Xanthis, Successive eigenvalue relaxation: A new method for generalized eigenvalue problems and convergence estimates, Proc. Roy. Soc. London Sect. A, 457 (2001), pp. 441–451.
34.
B. G. Pfrommer, J. Demmel, and H. Simon, Unconstrained energy functionals for electronic structure calculations, J. Comput. Phys., 150 (1999), pp. 287–298.
35.
B. T. Polyak, Introduction to Optimization, Optimization Software Inc. Publications Division, New York, 1987.
36.
Axel Ruhe, Rational Krylov: a practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci. Comput., 19 (1998), 1535–1551
37.
Youcef Saad, Numerical methods for large eigenvalue problems, Algorithms and Architectures for Advanced Scientific Computing, Manchester University Press, 1992xii+346
38.
P. Smit, M. Paardekooper, The effects of inexact solvers in algorithms for symmetric eigenvalue problems, Linear Algebra Appl., 287 (1999), 337–357, Special issue celebrating the 60th birthday of Ludwig Elsner
39.
S. I. Solov’ev, Convergence of the Modified Subspace Iteration Method for Nonlinear Eigenvalue Problems, Preprint SFB393/99‐35, Sonderforschungsbereich 393 an der Technischen Universität Chemnitz, Technische Universität, Chemnitz, Germany, 1999.
Also available from http://www.tu‐chemnitz.de/sfb393/Files/PS/sfb99‐35.ps.gz.
40.
S. I. Solov’ev, Preconditioned Gradient Iterative Methods for Nonlinear Eigenvalue Problems, Preprint SFB393/00‐28, Sonderforschungsbereich 393 an der Technischen Universität Chemnitz, Technische Universität, Chemnitz, Germany, 2000.
Also available from http://www.tu‐chemnitz.de/sfb393/Files/PS/sfb00‐28.ps.gz.
41.
E. Suetomi and H. Sekimoto, Conjugate gradient like methods and their application to eigenvalue problems for neutron diffusion equation, Ann. Nuclear Energy, 18 (1991), pp. 205.
42.
H. Yang, Conjugate gradient methods for the Rayleigh quotient minimization of generalized eigenvalue problems, Computing, 51 (1993), 79–94
43.
T. Zhang, G. Golub, K. Law, Subspace iterative methods for eigenvalue problems, Linear Algebra Appl., 294 (1999), 239–258
44.
T. Zhang, K. Law, G. Golub, On the homotopy method for perturbed symmetric generalized eigenvalue problems, SIAM J. Sci. Comput., 19 (1998), 1625–1645

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 517 - 541
ISSN (online): 1095-7197

History

Published online: 4 August 2006

MSC codes

  1. 65F15
  2. 65N25

Keywords

  1. symmetric eigenvalue problems
  2. preconditioning
  3. conjugate gradient methods
  4. the Lanczos method

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media