Abstract

The classical Schwarz method is a domain decomposition method to solve elliptic partial differential equations in parallel. Convergence is achieved through overlap of the subdomains. We study in this paper a variant of the Schwarz method which converges without overlap for the Helmholtz equation. We show that the key ingredients for such an algorithm are the transmission conditions. We derive optimal transmission conditions which lead to convergence of the algorithm in a finite number of steps. These conditions are, however, nonlocal in nature, and we introduce local approximations which we optimize for performance of the Schwarz method. This leads to an algorithm in the class of optimized Schwarz methods. We present an asymptotic analysis of the optimized Schwarz method for two types of transmission conditions, Robin conditions and transmission conditions with second order tangential derivatives. Numerical results illustrate the effectiveness of the optimized Schwarz method on a model problem and on a problem from industry.

MSC codes

  1. 65F10
  2. 65N22

Keywords

  1. optimized Schwarz methods
  2. domain decomposition
  3. preconditioner
  4. iterative parallel methods
  5. acoustics

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Jean‐David Benamou, Bruno Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys., 136 (1997), 68–82
2.
Xiao‐Chuan Cai, Mario Casarin, Frank Elliott, Jr., Olof Widlund, Overlapping Schwarz algorithms for solving Helmholtz’s equation, Contemp. Math., Vol. 218, Amer. Math. Soc., Providence, RI, 1998, 391–399
3.
Xiao‐Chuan Cai, Olof Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput., 13 (1992), 243–258
4.
Tony Chan, Tarek Mathew, Domain decomposition algorithms, Acta Numer., Cambridge Univ. Press, Cambridge, 1994, 61–143
5.
Philippe Chevalier, Frédéric Nataf, Symmetrized method with optimized second‐order conditions for the Helmholtz equation, Contemp. Math., Vol. 218, Amer. Math. Soc., Providence, RI, 1998, 400–407
6.
Francis Collino, Souad Ghanemi, Patrick Joly, Domain decomposition method for harmonic wave propagation: a general presentation, Comput. Methods Appl. Mech. Engrg., 184 (2000), 171–211, Vistas in domain decomposition and parallel processing in computational mechanics
7.
Armel de La Bourdonnaye, Charbel Farhat, Antonini Macedo, Frédéric Magoulès, François‐Xavier Roux, A non‐overlapping domain decomposition method for the exterior Helmholtz problem, Contemp. Math., Vol. 218, Amer. Math. Soc., Providence, RI, 1998, 42–66
8.
Bruno Després, Domain decomposition method and the Helmholtz problem. II, SIAM, Philadelphia, PA, 1993, 197–206
9.
Bruno Després, Patrick Joly, Jean Roberts, A domain decomposition method for the harmonic Maxwell equations, North‐Holland, Amsterdam, 1992, 475–484
10.
M. J. Gander, Optimized Schwarz methods for Helmholtz problems, in Proceedings of the 13th International Conference on Domain Decomposition Methods, Lyon, France, 2001, pp. 245–252.
11.
Martin Gander, Laurence Halpern, Frederic Nataf, Optimized Schwarz methods, DDM.org, Augsburg, 2001, 15–27
12.
S. Ghanemi, A domain decomposition method for Helmholtz scattering problems, in Proceedings of the Ninth International Conference on Domain Decomposition Methods, Bergen, Norway, 1996, P. E. Bjørstad, M. Espedal, and D. Keyes, eds., DDM.org, 1997, pp. 105–112.
13.
Robert Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comp., 47 (1986), 437–459
14.
, Proceedings of the 9th International Conference on Domain Decomposition Methods in Bergen, Norway, DDM.org, Augsburg, 1996, 0–0, 856 pp. (electronic), Held in Bergen, Norway, June 4–7, 1996; Available electronically at http://www.ddm.org/DD9/index.html
15.
C. Japhet and F. Nataf, The best interface conditions for domain decomposition methods: Absorbing boundary conditions, in Artificial Boundary Conditions, L. Tourrette, ed., Nova Science Publishers, Hauppage, NY, 2001.
16.
C. Japhet, F. Nataf, and F. Rogier, The optimized order 2 method. Application to convection‐diffusion problems, Future Generation Computer Systems, 18 (2001), pp. 17–30.
17.
P.‐L. Lions, On the Schwarz alternating method. I, SIAM, Philadelphia, PA, 1988, 1–42
18.
P.‐L. Lions, On the Schwarz alternating method. II. Stochastic interpretation and order properties, SIAM, Philadelphia, PA, 1989, 47–70
19.
P.‐L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, SIAM, Philadelphia, PA, 1990, 202–223
20.
F. Magoulès, Méthodes numériques de décomposition de domaine pour des problèmes de propagation d’ondes, Ph.D. thesis, University Pierre and Marie Curie, Paris, France, 2000.
21.
F. Magoulès, K. Meerbergen, and J.‐P. Coyette, Application of a domain decomposition method with Lagrange multipliers to acoustic problems arising from the automotive industry, J. Comput. Acoust., 8 (2000), pp. 503–521.
22.
Lois McInnes, Romeo Susan‐Resiga, David Keyes, Hafiz Atassi, Additive Schwarz methods with nonreflecting boundary conditions for the parallel computation of Helmholtz problems, Contemp. Math., Vol. 218, Amer. Math. Soc., Providence, RI, 1998, 325–333
23.
Keith Miller, Numerical analogs to the Schwarz alternating procedure, Numer. Math., 7 (1965), 91–103
24.
Alfio Quarteroni, Alberto Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, 1999xvi+360, Oxford Science Publications
25.
H. A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15 (1870), pp. 272–286.
26.
B. F. Smith, P. E. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1996.
27.
F. Willien, I. Faille, F. Nataf, and F. Schneider, Domain decomposition methods for fluid flow in porous medium, in Proceedings of the 6th European Conference on the Mathematics of Oil Recovery, Peebles, Scotland, 1998.
28.
Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), 581–613
29.
Jinchao Xu, Jun Zou, Some nonoverlapping domain decomposition methods, SIAM Rev., 40 (1998), 857–914

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 38 - 60
ISSN (online): 1095-7197

History

Published online: 25 July 2006

MSC codes

  1. 65F10
  2. 65N22

Keywords

  1. optimized Schwarz methods
  2. domain decomposition
  3. preconditioner
  4. iterative parallel methods
  5. acoustics

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media