Abstract

We seek error models for shock physics simulations that are robust and understandable. The purpose of this paper is to formulate and validate a composition law to estimate errors in the solutions of composite problems in terms of the errors from simpler ones. We illustrate this idea in a simple context. This paper employs several simplifying assumptions (restriction to one spatial dimension, use of a simplified (gamma law) equation of state, and consideration of a single numerical method). In separate papers we will address the effect of these assumptions.

MSC codes

  1. 65Z05
  2. 65G99
  3. 76L05

Keywords

  1. uncertainty quantification
  2. error model
  3. composition law
  4. Riemann problem

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Babuska and W. Rheinboldt, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12 (1978), pp. 1597–1615.
2.
L. Bonet‐Cunha, D. S. Oliver, R. A. Redner, and A. C. Reynolds, A hybrid Markov chain Monte Carlo method for generating permeability fields conditioned to multiwell pressure data and prior information, Soc. Pet. Eng. J., 3 (1998), pp. 261–271.
3.
Alexandre Chorin, Jerrold Marsden, A mathematical introduction to fluid mechanics, Texts in Applied Mathematics, Vol. 4, Springer‐Verlag, 1993xii+169
4.
Bernardo Cockburn, Huiing Gau, A posteriori error estimates for general numerical methods for scalar conservation laws, Mat. Apl. Comput., 14 (1995), 37–47
5.
Peter Craig, Michael Goldstein, Jonathan Rougier, Allan Seheult, Bayesian forecasting for complex systems using computer simulators, J. Amer. Statist. Assoc., 96 (2001), 717–729
6.
B. DeVolder, J. Glimm, J. W. Grove, Y. Kang, Y. Lee, K. Pao, D. H. Sharp, and K. Ye, Uncertainty quantification for multiscale simulations, J. Fluids Engrg., 124 (2002), pp. 29–41.
7.
James Glimm, Yoon‐ha Lee, Kenny Ye, A simple model for scale up error, Contemp. Math., Vol. 295, Amer. Math. Soc., Providence, RI, 2002, 241–251
8.
James Glimm, Shuling Hou, Hongjoong Kim, Yoon‐ha Lee, David Sharp, Kenny Ye, Qisu Zou, Risk management for petroleum reservoir production: a simulation‐based study of prediction, Comput. Geosci., 5 (2001), 173–197
9.
J. Glimm, S. Hou, H. Kim, D. Sharp, and K. Ye, A probability model for errors in the numerical solutions of a partial differential equation, CFD Journal, 9 (2000), pp. 485–493.
10.
J. Glimm, S. Hou, Y. Lee, D. Sharp, and K. Ye, Prediction of oil production with confidence intervals, in SPE Reservoir Simulation Symposium, Houston, TX, 2001.
11.
J. Glimm, D. Sharp, An S matrix theory for classical nonlinear physics, Found. Phys., 16 (1986), 125–141
12.
James Glimm, David Sharp, Stochastic methods for the prediction of complex multiscale phenomena, Quart. Appl. Math., 56 (1998), 741–765, Current and future challenges in the applications of mathematics (Providence, RI, 1997)
13.
J. Glimm, D. Sharp, Prediction and the quantification of uncertainty, Phys. D, 133 (1999), 152–170, Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998)
14.
Ami Harten, ENO schemes with subcell resolution, J. Comput. Phys., 83 (1989), 148–184
15.
B. K. Hegstad and H. Omre, Uncertainty assessment in history matching and forecasting, in Geostatistics Wollongong ‘96, E. Y. Baafi and N. A. Schofield, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997, pp. 585–596.
16.
Y. Kang, Estimation of Computational Simulation Errors in Gas Dynamics, Ph.D. thesis, State Univ. of New York, Stony Brook, 2003.
17.
Marc Kennedy, Anthony O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), 425–464
18.
L. Machiels, A. Patera, J. Peraire, and Y. Maday, A general framework for finite element a posteriori error control: Application to linear and nonlinear convection‐dominated problems, in Proceedings of ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford, England, 1998.
19.
Mark Ainsworth, J. Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley‐Interscience [John Wiley & Sons], 2000xx+240
20.
W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran77, Cambridge University Press, Cambridge, UK, 1992.
21.
B. Pelloni, Linear and nonlinear waves on a finite interval, World Sci. Publishing, River Edge, NJ, 2003, 287–294

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 666 - 697
ISSN (online): 1095-7197

History

Published online: 26 July 2006

MSC codes

  1. 65Z05
  2. 65G99
  3. 76L05

Keywords

  1. uncertainty quantification
  2. error model
  3. composition law
  4. Riemann problem

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media