Abstract

Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods are able to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or the integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz and his coworkers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an effective tool for reducing both the dependency problem and the wrapping effect. By construction, Taylor model methods appear particularly suitable for integrating nonlinear ODEs. We analyze Taylor model based integration of ODEs and compare Taylor model methods with traditional enclosure methods for IVPs for ODEs.

MSC codes

  1. 65G40
  2. 65L05
  3. 65L70

Keywords

  1. Taylor model methods
  2. verified integration
  3. ODEs
  4. IVPs

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.
2.
M. Berz, From Taylor series to Taylor models, in Beam Stability and Nonlinear Dynamics, AIP Conf. Proc. 405, American Institute of Physics, Melville, NY, East Lansing, MI, 1997, pp. 1–23.
3.
M. Berz, Cosy Infinity Version 8 Reference Manual, NSCL Technical report MSUCL‐1088, Michigan State University, East Lansing, MI, 1998.
4.
M. Berz, COSY INFINITY, available online at http://bt.pa.msu.edu/index_files/cosy.html, 2006.
5.
M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds, Reliab. Comput., 4 (1998), pp. 83–97.
6.
M. Berz and K. Makino, Verified integration of ODEs and flows using differential algebraic methods on high‐order Taylor models, Reliab. Comput., 4 (1998), pp. 361–369.
7.
M. Berz and K. Makino, New methods for high‐dimensional verified quadrature, Reliab. Comput., 5 (1999), pp. 13–22.
8.
M. Berz and K. Makino, Performance of Taylor model methods for validated integration of ODEs, in On the Approximation of Interval Functions, Lecture Notes in Comput. Sci. 3732, Springer‐Verlag, New York, 2006, pp. 65–73.
9.
G. F. Corliss, Survey of interval algorithms for ordinary differential equations, Appl. Math. Comput., 31 (1989), pp. 112–120.
10.
G. F. Corliss, Guaranteed error bounds for ordinary differential equations, in Theory and Numerics of Ordinary and Partial Differential Equations, M. Ainsworth, J. Levesley, W. A. Light, and M. Marletta, eds., Clarendon Press, Oxford, UK, 1995.
11.
J.‐P. Eckmann, H. Koch, and P. Wittwer, A computer‐assisted proof of universality in area‐preserving maps, Mem. Amer. Math. Soc., 47 (1984).
12.
P. Eijgenraam, The Solution of Initial Value Problems Using Interval Arithmetic, Mathematical Centre Tracts 144, Stichting Mathematisch Centrum, Amsterdam, The Netherlands, 1981.
13.
J. Hoefkens, M. Berz, and K. Makino, Verified high‐order integration of DAEs and higher‐order ODEs, in Scientific Computing, Validated Numerics, and Interval Methods, W. Krämer and J. Wolff von Gudenberg, eds., Kluwer, Dordrecht, The Netherlands, 2001, pp. 281–292.
14.
L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, Springer‐Verlag, London, 2001.
15.
E. Kaucher, Self‐validating computation of ordinary and partial differential equations, in Computerarithmetic: Scientific Computation and Programming Languages, E. Kaucher, U. Kulisch, and Ch. Ullrich, eds., Teubner, Stuttgart, 1987, pp. 221–254.
16.
E. W. Kaucher and W. L. Miranker, Self‐Validating Numerics for Function Space Problems, Academic Press, New York, 1984.
17.
R. Klatte, U. Kulisch, Ch. Lawo, M. Rauch, and A. Wiethoff, C‐XSC: A C++ Class Library for Extended Scientific Computing, Springer‐Verlag, Berlin, 1993.
18.
R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich, Pascal‐XSC—Language Reference with Examples, Springer‐Verlag, Berlin, 1992.
19.
W. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing, 61 (1998), pp. 47–67.
20.
U. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic Press, New York, 1981.
21.
R. Lohner, Einschließung der Lösung gewöhnlicher Anfangs‐ und Randwertaufgaben und Anwendungen, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany, 1988.
22.
R. Lohner, Computation of guaranteed solutions of ordinary initial and boundary value problems, in Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell, eds., Clarendon Press, Oxford, UK, 1992, pp. 425–435.
23.
R. Lohner, On the ubiquity of the wrapping effect in the computation of error bounds, in Perspectives of Enclosure Methods, U. Kulisch, R. Lohner, and A. Facius, eds., Springer‐Verlag, Vienna, 2001, pp. 201–217.
24.
K. Makino, Rigorous Analysis of Nonlinear Motion in Particle Accelerators, Ph.D. thesis, Michigan State University, East Lansing, MI, 1998.
25.
K. Makino and M. Berz, Remainder differential algebras and their applications, in Computational Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds., SIAM, Philadelphia, 1996, pp. 63–74.
26.
K. Makino and M. Berz, COSY INFINITY version 8, Nuclear Instruments and Methods in Physics Research A, 427 (1999), pp. 338–343.
27.
K. Makino and M. Berz, Efficient control of the dependency problem based on Taylor model methods, Reliab. Comput., 5 (1999), pp. 3–12.
28.
K. Makino and M. Berz, Taylor models and other validated functional inclusion methods, Int. J. Pure Appl. Math., 4 (2003), pp. 379–456.
29.
K. Makino and M. Berz, Suppression of the Wrapping Effect by Taylor Model‐Based Validated Integrators, MSU Report MSUHEP 40910, Michigan State University, East Lansing, MI, 2004.
30.
K. Makino, M. Berz, and Y. Kim, Range bounding with Taylor models—some case studies, WSEAS Transactions on Mathematics, 3 (2004), pp. 137–145.
31.
R. E. Moore, The automatic analysis and control of error in digital computation based on the use of interval numbers, in Error in Digital Computation, Vol. I, L. B. Rall, ed., John Wiley and Sons, New York, 1965, pp. 61–130.
32.
R. E. Moore, Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations, in Error in Digital Computation, Vol. II, L. B. Rall, ed., John Wiley and Sons, New York, 1965, pp. 103–140.
33.
R. E. Moore, Interval Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1966.
34.
P. S. V. Nataraj and K. Kotecha, Global optimization with higher order inclusion function forms. Part 1: A combined Taylor‐Bernstein form, Reliab. Comput., 10 (2004), pp. 27–44.
35.
N. S. Nedialkov, Computing Rigorous Bounds on the Solution of an IVP for an ODE, Ph.D. thesis, University of Toronto, Toronto, Canada, 1999.
36.
N. S. Nedialkov and K. R. Jackson, A new perspective on the wrapping effect in interval methods for initial value problems for ordinary differential equations, in Perspectives of Enclosure Methods, U. Kulisch, R. Lohner, and A. Facius, eds., Springer‐Verlag, Vienna, 2001, pp. 219–264.
37.
N. S. Nedialkov and K. R. Jackson, Some recent advances in validated methods for IVPs for ODEs, Appl. Numer. Math., 42 (2003), pp. 269–284.
38.
N. S. Nedialkov, K. R. Jackson, and G. F. Corliss, Validated solutions of initial value problems for ordinary differential equations, Appl. Math. Comput., 105 (1999), pp. 21–68.
39.
N. S. Nedialkov, K. R. Jackson, and J. Pryce, An effective high‐order interval method for validating existence and uniqueness of the solution of an IVP for an ODE, Reliab. Comput., 7 (2001), pp. 449–465.
40.
M. Neher, Geometric series bounds for the local errors of Taylor methods for linear nth order ODEs, in Symbolic Algebraic Methods and Verification Methods, G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto, eds., Springer‐Verlag, Vienna, 2001, pp. 183–193.
41.
A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, UK, 1990.
42.
A. Neumaier, Taylor forms—use and limits, Reliab. Comput., 9 (2003), pp. 43–79.
43.
H. Ratschek and J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood Limited, Chichester, UK, 1984.
44.
R. Rihm, Über Einschließungsverfahren für gewöhnliche Anfangswertprobleme und ihre Anwendung auf Differentialgleichungen mit unstetiger rechter Seite, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany, 1993.
45.
R. Rihm, Interval methods for initial value problems in ODEs, in Topics in Validated Computations, J. Herzberger, ed., Elsevier, Amsterdam, The Netherlands, 1994, pp. 173–207.
46.
H. J. Stetter, Validated solution of initial value problems for ODE, Notes Rep. Math. Sci. Engrg., 7 (1990), pp. 171–193.
47.
N. F. Stewart, A heuristic to reduce the wrapping effect in the numerical solution of $x' = f(t,x)$, BIT, 11 (1971), pp. 328–337.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 236 - 262
ISSN (online): 1095-7170

History

Submitted: 19 August 2005
Accepted: 21 August 2006
Published online: 22 January 2007

MSC codes

  1. 65G40
  2. 65L05
  3. 65L70

Keywords

  1. Taylor model methods
  2. verified integration
  3. ODEs
  4. IVPs

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media