Low-Rank Approximation of Generic $p \timesq \times2$ Arrays and Diverging Components in the Candecomp/Parafac Model

Abstract

We consider the low-rank approximation over the real field of generic $p \times q \times 2$ arrays. For all possible combinations of p, q, and R, we present conjectures on the existence of a best rank-R approximation. Our conjectures are motivated by a detailed analysis of the boundary of the set of arrays with at most rank R. We link these results to the Candecomp/Parafac (CP) model for three-way component analysis. Essentially, CP tries to find a best rank-R approximation to a given three-way array. In the case of $p \times q \times 2$ arrays, we show (under some regularity condition) that if a best rank-R approximation does not exist, then any sequence of CP updates will exhibit diverging CP components, which implies that several components are highly correlated in all three modes and their component weights become arbitrarily large. This extends Stegeman [Psychometrika, 71 (2006), pp. 483–501], who considers $p \times p \times 2$ arrays of rank $p+1$ or higher. We illustrate our results by means of simulations.

MSC codes

  1. 15A03
  2. 15A22
  3. 15A69
  4. 49M27
  5. 62H25

Keywords

  1. low-rank tensor approximations
  2. border rank
  3. arrays
  4. Candecomp
  5. Parafac
  6. three-way arrays
  7. degenerate Parafac solutions

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. Bini, M. Capovani, F. Romani, and G. Lotti, $O(n^{2.7799})$ complexity for $n\times n$ approximate matrix multiplication, Inform. Process. Lett., 8 (1979), pp. 234–235.
2.
D. Bini, G. Lotti, and F. Romani, Approximate solutions for the bilinear form computational problem, SIAM J. Comput., 9 (1980), pp. 692–697.
3.
D. Bini, Relations between exact and approximate bilinear algorithms. Applications, Calcolo, 17 (1980), pp. 87–97.
4.
D. Bini, Border rank of a $p\times q\times 2$ tensor and the optimal approximation of a pair of bilinear forms, in Automata, Languages and Programming, J. W. de Bakker and J. van Leeuwen, eds., Lecture Notes in Comput. Sci. 85, Springer, New York, 1980, pp. 98–108.
5.
D. Bini, Border rank of $m\times n\times (mn-q)$ tensors, Linear Algebra Appl., 79 (1986), pp. 45–51.
6.
R. W. Brockett and D. Dobkin, On the optimal evaluation of a set of bilinear forms, Linear Algebra Appl., 19 (1978), pp. 207–235.
7.
P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Springer, Berlin, 1997.
8.
Y. Z. Cao, Z. P. Chen, C. Y. Mo, H. L. Wu, and R. Q. Yu, A Parafac algorithm using penalty diagonalization error (PDE) for three-way data array resolution, The Analyst, 125 (2000), pp. 2303–2310.
9.
J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart–Young decomposition, Psychometrika, 35 (1970), pp. 283–319.
10.
V. De Silva and L.-H. Lim, Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem, SCCM Technical report, 06-06, Stanford University, Palo Alto, CA, 2006; available online at http://www.sccm.stanford.edu/wrap/pubtech.html.
11.
C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1 (1936), pp. 211–218.
12.
F. R. Gantmacher, The Theory of Matrices, Volumes 1 and 2, Chelsea, New York, 1959.
13.
R. A. Harshman, Foundations of the Parafac procedure: Models and conditions for an “explanatory" multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), pp. 1–84.
14.
R. A. Harshman and M. E. Lundy, Data preprocessing and the extended Parafac model, in Research Methods for Multimode Data Analysis, H. G. Law, C. W. Snyder Jr., J. A. Hattie, and R. P. McDonald, eds., Praeger, New York, 1984, pp. 216–284.
15.
F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), pp. 164–189.
16.
F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or tensor, J. Math. Phys., 7 (1927), pp. 39–79.
17.
P. K. Hopke, P. Paatero, H. Jia, R. T. Ross, and R. A. Harshman, Three-way (Parafac) factor analysis: Examination and comparison of alternative computational methods as applied to ill-conditioned data, Chemom. Intel. Lab. Syst., 43 (1998), pp. 25–42.
18.
J. Ja'Ja', Optimal evaluation of pairs of bilinear forms, SIAM J. Comput., 8 (1979), pp. 443–462.
19.
J. Ja'Ja', An addendum to Kronecker's theory of pencils, SIAM J. Appl. Math., 37 (1979), pp. 700–712.
20.
L. Kronecker, Algebraische reduction der schaaren bilinearer formen, Sitzungber. Akad. Berlin (1890), pp. 763–776.
21.
P. M. Kroonenberg, Three-Mode Principal Component Analysis, DSWO, Leiden, The Netherlands, 1983.
22.
J. B. Kruskal, Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), pp. 95–138.
23.
J. B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays, in Multiway Data Analysis, R. Coppi and S. Bolasco, eds., North-Holland, Amsterdam, 1989, pp. 7–18.
24.
J. B. Kruskal, R. A. Harshman, and M. E. Lundy, How 3-MFA data can cause degenerate Parafac solutions, among other relationships, in Multiway Data Analysis, R. Coppi and S. Bolasco, eds., North-Holland, Amsterdam, 1989, pp. 115–121 .
25.
J. M. Landsberg, The border rank of the multiplication of $2\times 2$ matrices in seven, J. Amer. Math. Soc., 19 (2006), pp. 447–459.
26.
L.-H. Lim, What's possible and what's impossible in tensor decompositions/approximation, Talk at the Tensor Decomposition Workshop, Palo Alto, CA, 2004; available online at http://csmr.ca.sandia.gov/$\!_{^{\sim}}\!$tgkolda/tdw2004/.
27.
L.-H. Lim, Optimal solutions to nonnegative Parafac/multilinear NMF always exist, Talk at the Workshop on Tensor Decompositions and Applications, CIRM, Luminy, Marseille, France, 2005; available online at http://www.etis.ensea.fr/$\!_{^{\sim}}\!$wtda/.
28.
B. C. Mitchell and D. S. Burdick, Slowly converging Parafac sequences: Swamps and two-factor degeneracies, J. Chemometrics, 8 (1994), pp. 155–168.
29.
P. Paatero, The Multilinear Engine—A table-driven least squares program for solving multilinear problems, including the n-way Parallel Factor Analysis model, J. Comput. Graph. Statist., 8 (1999), pp. 854–888.
30.
P. Paatero, Construction and analysis of degenerate Parafac models, J. Chemometrics, 14 (2000), pp. 285–299.
31.
W. S. Rayens and B. C. Mitchell, Two-factor degeneracies and a stabilization of Parafac, Chemometrics Intel. Lab. Syst., 38 (1997), pp. 173–181.
32.
N. D. Sidiropoulos, Low-rank decomposition of multi-way arrays: A signal processing perspective, Invited Plenary Lecture at the IEEE Sensor Array and Multichannel (SAM) Signal Processing Workshop, Sitges, Barcelona, Spain, 2004. Available online at http://www.telecom.tuc.gr/$\!_{^{\sim}}\!$nikos/.
33.
A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications in the Chemical Sciences, John Wiley & Sons, New York, 2004.
34.
A. Stegeman, Degeneracy in Candecomp/Parafac explained for $p\times p\times 2$ arrays of rank $p+1$ or higher, Psychometrika, 71 (2006), pp. 483–501.
35.
A. Stegeman, Degeneracy in Candecomp/Parafac explained for several three-sliced arrays with a two-valued typical rank, Psychometrika, (2008), in press.
36.
V. Strassen, Vermeidung von divisionen, J. Reine Angew. Math., 246 (1973), pp. 184–202.
37.
J. M. F ten Berge, H. A. L. Kiers, and J. De Leeuw, Explicit Candecomp/Parafac solutions for a contrived $2\times 2\times 2$ array of rank three, Psychometrika, 53 (1988), pp. 579–584.
38.
J. M. F. ten Berge, Kruskal's polynomial for $2\times 2\times 2$ arrays and a generalization to $2\times n\times n$ arrays, Psychometrika, 56 (1991), pp. 631–636.
39.
J. M. F. ten Berge and H. A. L. Kiers, Simplicity of core arrays in three-way principal component analysis and the typical rank of $p\times q\times 2$ arrays, Linear Algebra Appl., 294 (1999), pp. 169–179.
40.
J. M. F. ten Berge, Partial uniqueness in Candecomp/Parafac, J. Chemometrics, 18 (2004), pp. 12–16.
41.
G. Tomasi and R. Bro, A Comparison of algorithms for fitting the Parafac model, Comput. Statist. Data Anal., 50 (2006), pp. 1700–1734.
42.
K. Weierstrass, Zur theorie der bilinearen und quadratischen formen, Monatsber. Akad. Wiss. Berlin, (1868), pp. 310–338.
43.
B. J. H. Zijlstra and H. A. L. Kiers, Degenerate solutions obtained from several variants of factor analysis, J. Chemometrics, 16 (2002), pp. 596–605.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 988 - 1007
ISSN (online): 1095-7162

History

Submitted: 9 November 2005
Accepted: 6 March 2007
Published online: 25 September 2008

MSC codes

  1. 15A03
  2. 15A22
  3. 15A69
  4. 49M27
  5. 62H25

Keywords

  1. low-rank tensor approximations
  2. border rank
  3. arrays
  4. Candecomp
  5. Parafac
  6. three-way arrays
  7. degenerate Parafac solutions

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media