Abstract

Motivated by numerous applications in which the data may be modeled by a variable subscripted by three or more indices, we develop a tensor-based extension of the matrix CUR decomposition. The tensor-CUR decomposition is most relevant as a data analysis tool when the data consist of one mode that is qualitatively different from the others. In this case, the tensor-CUR decomposition approximately expresses the original data tensor in terms of a basis consisting of underlying subtensors that are actual data elements and thus that have a natural interpretation in terms of the processes generating the data. Assume the data may be modeled as a $(2+1)$-tensor, i.e., an $m \times n \times p$ tensor $\mathcal{A}$ in which the first two modes are similar and the third is qualitatively different. We refer to each of the p different $m \times n$ matrices as “slabs” and each of the $mn$ different p-vectors as “fibers.” In this case, the tensor-CUR algorithm computes an approximation to the data tensor $\mathcal{A}$ that is of the form $\mathcal{CUR}$, where $\mathcal{C}$ is an $m \times n \times c$ tensor consisting of a small number c of the slabs, $\mathcal{R}$ is an $r \times p$ matrix consisting of a small number r of the fibers, and $\mathcal{U}$ is an appropriately defined and easily computed $c \times r$ encoding matrix. Both $\mathcal{C}$ and $\mathcal{R}$ may be chosen by randomly sampling either slabs or fibers according to a judiciously chosen and data-dependent probability distribution, and both c and r depend on a rank parameter k, an error parameter $\epsilon$, and a failure probability $\delta$. Under appropriate assumptions, provable bounds on the Frobenius norm of the error tensor $\mathcal{A} - \mathcal{CUR}$ are obtained. In order to demonstrate the general applicability of this tensor decomposition, we apply it to problems in two diverse domains of data analysis: hyperspectral medical image analysis and consumer recommendation system analysis. In the hyperspectral data application, the tensor-CUR decomposition is used to compress the data, and we show that classification quality is not substantially reduced even after substantial data compression. In the recommendation system application, the tensor-CUR decomposition is used to reconstruct missing entries in a user-product-product preference tensor, and we show that high quality recommendations can be made on the basis of a small number of basis users and a small number of product-product comparisons from a new user.

MSC codes

  1. 15A23

Keywords

  1. CUR decomposition
  2. tensor decomposition
  3. hyperspectral imagery
  4. recommendation system

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Trans. Knowl. Data Eng., 17 (2005), pp. 734–749.
2.
C. Angeletti, N. R. Harvey, V. Khomitch, R. Levenson, and D. L. Rimm, Detection of malignant cells in cytology specimen using genie hybrid genetic algorithm, Mod. Pathol., 17 (2004), Suppl 1:350A.
3.
C. Angeletti, R. Jaganth, R. M. Levenson, and D. L. Rimm, Spectral analysis: A novel method for classification of urine cytology. Mod. Pathol., 16 (2003), 57A.
4.
Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and J. Saiaz, Spectral analysis of data, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 619–626.
5.
T. S. Barry, A. M. Gown, H. E. Yaziji, and R. W. Levenson, Use of spectral imaging analysis for evaluation of multi-color immuno-histochemistry, Mod. Pathol., 17 (2004), Suppl 1:350A.
6.
M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000), pp. 565–589.
7.
M. W. Berry, S. A. Pulatova, and G. W. Stewart, Computing Sparse Reduced-Rank Approximations to Sparse Matrices, Technical report UMIACS TR-2004-32 CMSC TR-4589, University of Maryland, College Park, MD, 2004.
8.
G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.
9.
D. Billsus and M. J. Pazzani, Learning collaborative information filters, in Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufman, San Francisco, 1998, pp. 46–54.
10.
J. Breese, D. Heckerman, and C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufman, San Francisco, 1998, pp. 43–52.
11.
J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970), pp. 283–319.
12.
W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, in Annual Advances in Neural Information Processing Systems 10: Proceedings of the 1997 Conference, 1998, pp. 451–457.
13.
R. R. Coifman, Multiresolution analysis in non-homogeneous media, in Wavelets. Time-Frequency Methods and Phase Space, J.-M. Combes, A. Grossmann, and P. Tchamitchian, eds., Springer-Verlag, Berlin, 1989, p. 259.
14.
G. L. Davis, M. Maggioni, R. R. Coifman, D. L. Rimm, and R. M. Levenson, Spectral/ spatial analysis of colon carcinoma, Mod. Pathol., 16 (2003), 3320:3321A.
15.
G. L. Davis, M. Maggioni, F. J. Warner, F. B. Geshwind, A. C. Coppi, R. A. DeVerse, and R. R. Coifman, Spectral analysis of normal and malignant microarray tissue sections using a novel micro-optoelectricalmechanical system, Mod. Pathol., 17 (2004), 1:358A.
16.
R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, Application of spatial light modulators for new modalities in spectrometry and imaging, in Proceedings of the SPIE 4959, 2003, pp. 12–22.
17.
P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication, SIAM J. Comput., 36 (2006), pp. 132–157.
18.
P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158–183.
19.
P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition, SIAM J. Comput., 36 (2006), pp. 184–206.
20.
P. Drineas, I. Kerenidis, and P. Raghavan, Competitive recommendation systems, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 82–90.
21.
P. Drineas and M. W. Mahoney, Approximating a Gram matrix for improved kernel-based learning, in Proceedings of the 18th Annual Conference on Learning Theory, Springer-Verlag, Berlin, 2005, pp. 323–337.
22.
P. Drineas and M. W. Mahoney, On the Nyström method for approximating a Gram matrix for improved kernel-based learning, J. Mach. Learn. Res., 6 (2005), pp. 2153–2175.
23.
P. Drineas and M. W. Mahoney, A randomized algorithm for a tensor-based generalization of the singular value decomposition, Linear Algebra Appl., 420 (2007), pp. 553–571.
24.
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, J. Mach. Learn. Res., 4 (2003), pp. 933–969.
25.
Y. Garini, N. Katzir, D. Cabib, R. A. Buckwald, D.G. Soenksen, and Z. Malik, Spectral bio-imaging, in Fluorescence Imaging Spectroscopy and Microscopy, John Wiley and Sons, New York, 1996, pp. 87–124.
26.
K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, Eigentaste: A constant time collaborative filtering algorithm, Inform. Retrieval, 4 (2001), pp. 133–151.
27.
T. Gonzalez and J. Ja'Ja', On the complexity of computing bilinear forms with $\{0,1\}$ constants, J. Comput. System Sci., 20 (1980), pp. 77–95.
28.
S. A. Goreinov and E. E. Tyrtyshnikov, The maximum-volume concept in approximation by low-rank matrices, in Structured Matrices in Mathematics, Computer Science, and Engineering, I., Contemp. Math. 280, AMS, Providence, RI, 2001, pp. 47–51.
29.
S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1–21.
30.
W. H. Greub, Multilinear Algebra, Springer-Verlag, Berlin, 1967.
31.
R. A. Harshman and M. E. Lundy, The PARAFAC model for three-way factor analysis and multidimensional scaling, in Research Methods for Multimode Data Analysis, H. G. Law, C. W. Snyder, Jr., J. Hattie, and R. P. McDonald, eds., Praeger, New York, 1984, pp. 122–215.
32.
J. Håstad, Tensor rank is NP-complete, J. Algorithms, 11 (1990), pp. 644–654.
33.
T. D. Howell, Global properties of tensor rank, Linear Algebra Appl., 22 (1978), pp. 9–23.
34.
R. Jin, L. Si, and C. X. Zhai, Preference-based graphic models for collaborative filtering, in Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, Morgan Kaufman, San Francisco, 2003, pp. 329–336.
35.
R. Jin, L. Si, C. X. Zhai, and J. Callan, Collaborative filtering with decoupled models for preferences and ratings, in Proceedings of the 12th ACM International Conference on Information and Knowledge Management, 2003, pp. 309–316.
36.
H. A. L. Kiers, Towards a standardized notation and terminology in multiway analysis, J. Chemometrics, 14 (2000), pp. 105–122.
37.
J. Kleinberg and M. Sandler, Using mixture models for collaborative filtering, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 569–578.
38.
T. G. Kolda, A counterexample to the possibility of an extension of the Eckart–Young low-rank approximation theorem for the orthogonal rank tensor decomposition, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 762–767.
39.
P. M. Kroonenberg and J. De Leeuw, Principal component analysis of three-mode data by means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97.
40.
J. B. Kruskal, Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), pp. 95–138.
41.
J. B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays, in Multiway Data Analysis, R. Coppi and S. Bolasco, eds., North–Holland, Amsterdam, 1989, pp. 7–18.
42.
R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, Recommendation systems: A probabilistic analysis, in Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, 1998, pp. 664–673.
43.
L. De Lathauwer, B. De Moor, and J. Vandewalle, An introduction to independent component analysis, J. Chemometrics, 14 (2000), pp. 123–149.
44.
L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.
45.
L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-$(R_1,R_2,\ldots,R_N)$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324–1342.
46.
D. Leibovici and R. Sabatier, A singular value decomposition of a k-way array for a principal component analysis of multiway data, PTA-k, Linear Algebra Appl., 269 (1998), pp. 307–329.
47.
R. M. Levenson and D. Farkas, Digital spectral imaging for histopathology and cytopathology, in Proceedings of the SPIE 2983, 1997, pp. 123–135.
48.
L.-H. Lim and G. H. Golub, Tensors for Numerical Multilinear Algebra: Ranks and Basic Decompositions, Technical report 05-02, Stanford University SCCM, Stanford, CA, 2005.
49.
G. Linden, B. Smith, and J. York, Amazon.com recommendations: Item-to-item collaborative filtering, IEEE Internet Comput., 7 (2003), pp. 76–80.
50.
C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000), pp. 85–100.
51.
M. Maggioni, G. L. Davis, F. J. Warner, F. B. Geshwind, A. C. Coppi, R. A. DeVerse, and R. R. Coifman, Algorithms from Signal and Data Processing Applied to Hyperspectral Analysis: Discriminating Normal and Malignant Microarray Colon Tissue Sections Using a Novel Digital Mirror Device System, Technical report YALEU/DCS/TR-1311, Yale University Department of Computer Science, New Haven, CT, 2004.
52.
M. W. Mahoney, M. Maggioni, and P. Drineas, Tensor-CUR decompositions for tensor-based data, in Proceedings of the 12th Annual ACM SIGKDD Conference, 2006, pp. 327–336.
53.
A. Papadakis, E. Stathopoulos, G. Delides, K. Berberides, G. Nikiforides, and C. Balas, A novel spectral microscope system: Application in quantitative pathology, IEEE Trans. Biomed. Eng., 50 (2003), pp. 207–217.
54.
P. Resnick and H. R. Varian, Recommender systems, Comm. ACM, 40 (1997), pp. 56–58.
55.
C. Rothman, I. Bar-Am, and Z. Malik, Spectral imaging for quantitative histology and cytogenetics, Histology and Histopathology, 13 (1998), pp. 921–926.
56.
N. Saito and R. R. Coifman, Local discriminant bases and their applications, J. Math. Imaging Vision, 5 (1995), pp. 337–358.
57.
N. Saito, R. R. Coifman, F. B. Geshwind, and F. Warner, Discriminant feature extraction using empirical probability density estimation and a local basis library, Pattern Recognition, 35 (2002), pp. 2841–2852, 2002.
58.
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Application of dimensionality reduction in recommender system—a case study, in Proceedings of the WebKDD 2000 Workshop, 2000.
59.
G. W. Stewart, Four algorithms for the efficient computation of truncated QR approximations to a sparse matrix, Numer. Math., 83 (1999), pp. 313–323.
60.
G. W. Stewart, Error analysis of the quasi-Gram–Schmidt algorithm, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 493–506.
61.
L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279–311.
62.
M. Turk and A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci., 3 (1991), pp. 71–96.
63.
E. Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton method, Computing, 64 (2000), pp. 367–380.
64.
S. G. Vari, G. Muller, J. M. Lerner, and R. D. Naber, Telepathology and imaging spectroscopy as a new modality in histopathology, Stud. Health Technol. Inform., 68 (1999), pp. 211–216.
65.
M. A. O. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: TensorFaces, in Proceedings of the 7th European Conference on Computer Vision, Springer-Verlag, Berlin, 2002, pp. 447–460.
66.
C. K. I. Williams and M. Seeger, Using the Nyström method to speed up kernel machines, in Annual Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference, MIT Press, Cambridge, MA, 2001, pp. 682–688.
67.
T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 534–550.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 957 - 987
ISSN (online): 1095-7162

History

Submitted: 17 July 2006
Accepted: 8 January 2007
Published online: 25 September 2008

MSC codes

  1. 15A23

Keywords

  1. CUR decomposition
  2. tensor decomposition
  3. hyperspectral imagery
  4. recommendation system

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media