Hydrodynamic Limit of a Fokker–Planck Equation Describing Fiber Lay-Down Processes

In this paper, a stochastic model for the turbulent fiber lay-down in the industrial production of nonwoven materials is extended by including a moving conveyor belt. In the hydrodynamic limit corresponding to large noise values, the transient and stationary joint probability distributions are determined using the method of multiple scales and the Chapman–Enskog method. Moreover, exponential convergence towards the stationary solution is proven for the reduced problem. For special choices of the industrial parameters, the stochastic limit process is an Ornstein–Uhlenbeck process. It is a good approximation of the fiber motion even for moderate noise values. Moreover, as shown by Monte-Carlo simulations, the limiting process can be used to assess the quality of nonwoven materials in the industrial application by determining distributions of functionals of the process.

  • [1]  J. A. Acebrón, L. L. Bonilla, C. J. Pérez-Vicente, F. Ritort and , and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77 (2005), pp. 137–185. RMPHAT 0034-6861 CrossrefGoogle Scholar

  • [2]  A. Arnold, P. Markowich, G. Toscani and , and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), pp. 43–100. CPDIDZ 0360-5302 CrossrefISIGoogle Scholar

  • [3]  Google Scholar

  • [4]  L. L. Bonilla, Chapman-Enskog method and synchronization of globally coupled oscillators, Phys. Rev. E (3), 62 (2000), pp. 4862–4868. PLEEE8 1063-651X CrossrefISIGoogle Scholar

  • [5]  T. Götz, A. Klar, N. Marheineke and , and R. Wegener, A stochastic model for the fiber lay-down process in the nonwoven production, SIAM J. Appl. Math., 67 (2007), pp. 1704–1717. SMJMAP 0036-1399 LinkISIGoogle Scholar

  • [6]  L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), pp. 1061–1083. AJMAAN 0002-9327 CrossrefISIGoogle Scholar

  • [7]  Google Scholar

  • [8]  J. W. S. Hearle, M. A. I. Sultan and , and S. Govender, The form taken by threads laid on a moving belt, parts i–iii, J. Textile Inst., 67 (1976), pp. 373–386. JTINA7 0040-5000 CrossrefISIGoogle Scholar

  • [9]  Google Scholar

  • [10]  L. Mahadevan and  and J. B. Keller, Coiling of flexible ropes, Proc. Roy. Soc. London Ser. A, 452 (1996), pp. 1679–1694. PRLAAZ 1364-5021 CrossrefISIGoogle Scholar

  • [11]  N. Marheineke and  and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework, SIAM J. Appl. Math., 66 (2006), pp. 1703–1726. SMJMAP 0036-1399 LinkISIGoogle Scholar

  • [12]  N. Marheineke and  and R. Wegener, Fiber dynamics in turbulent flows: Specific Taylor drag, SIAM J. Appl. Math., 68 (2007), pp. 1–23. SMJMAP 0036-1399 LinkISIGoogle Scholar