A Posteriori Error Estimate and Adaptive Mesh Refinement for the Cell-Centered Finite Volume Method for Elliptic Boundary Value Problems

Abstract

We extend a result of Nicaise [SIAM J. Numer. Anal., 43 (2005), pp. 1481–1503] for the a posteriori error estimation of the cell-centered finite volume method for the numerical solution of elliptic problems. Having computed the piecewise constant finite volume solution $u_h$, we compute a Morley-type interpolant $\mathcal{I} u_h$. For the exact solution u, the energy error $\norm{\nabla_{\mathcal{T}}(u-\mathcal{I} u_h)}{L^2}$ can be controlled efficiently and reliably by a residual-based a posteriori error estimator $\eta$. The local contributions of $\eta$ are used to steer an adaptive mesh-refining algorithm. A model example serves the Laplace equation in two dimensions with mixed Dirichlet–Neumann boundary conditions.

MSC codes

  1. 65N30
  2. 65N15

Keywords

  1. finite volume method
  2. cell-centered method
  3. diamond path
  4. a posteriori error estimate
  5. adaptive algorithm

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley and Sons, New York, 2000.
2.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.
3.
J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), pp. 2524–2550.
4.
S. Cochez-Dhondt and S. Nicaise, Equilibrated error estimators for discontinuous Galerkin methods, Numer. Methods Partial Differential Equations, 24 (2008), pp. 1236–1252.
5.
W. J. Coirier, An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations, Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1994.
6.
Y. Coudière, J. P. Vila, and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal., 33 (2000), pp. 493–516.
7.
Y. Coudière and P. Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 1123–1149.
8.
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106–1124.
9.
C. Erath, Adaptive Finite Volumen Methode, Diploma thesis, Vienna University of Technology, Vienna, Austria, 2005.
10.
R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. 7, North–Holland, Amsterdam, 2000, pp. 713–1020.
11.
S. Nicaise, A posteriori error estimations of some cell-centered finite volume methods, SIAM J. Numer. Anal., 43 (2005), pp. 1481–1503.
12.
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 109 - 135
ISSN (online): 1095-7170

History

Submitted: 6 September 2007
Accepted: 9 June 2008
Published online: 24 October 2008

MSC codes

  1. 65N30
  2. 65N15

Keywords

  1. finite volume method
  2. cell-centered method
  3. diamond path
  4. a posteriori error estimate
  5. adaptive algorithm

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media