Abstract

J. A. George has discovered a method, called nested dissection, for solving a system of linear equations defined on an $n = k \times k$ square grid in $O(n\log n)$ and space $O(n^{{3 /2}} )$ time. We generalize this method without degrading the time and space bounds so that it applies to any system of equations defined on a planar or almost-planar graph. Such systems arise in the solution of two-dimensional finite element problems. Our method uses the fact that planar graphs have good separators.
More generally, we show that sparse Gaussian elimination is efficient for any class of graphs which have good separators, and conversely that graphs without good separators (including “almost all” sparse graphs) are not amenable to sparse Gaussian elimination.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975x+470
2.
R. C. Backhouse, B. A. Carré, Regular algebra applied to path-finding problems, J. Inst. Math. Appl., 15 (1975), 161–186
3.
James R. Bunch, John E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Math. Comp., 28 (1974), 231–236
4.
B. A. Carré, An algebra for network routing problems, J. Inst. Math. Appl., 7 (1971), 273–294
5.
S. C. Eisenstat, M. H. Schultz, A. H. Sherman, J. R. Bunch, D. J. Rose, Applications of an element model for Gaussian eliminationSparse matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975), Academic Press, New York, 1976, 85–96
6.
S. C. Eisenstat, M. H. Schultz, A. H. Sherman, J. R. Bunch, D. J. Rose, Considerations in the design of software for sparse Gaussian eliminationSparse Matrix Computations, Academic Press, New York, 1976, 263–273
7.
Paul Erdo˝s, Joel Spencer, Probabilistic methods in combinatorics, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974, 106–
8.
P. Erdo˝s, R. L. Graham, E. Szemeredi, On sparse graphs with dense long pathsComputers and mathematics with applications, Pergamon, Oxford, 1976, 365–369
9.
George E. Forsythe, Cleve B. Moler, Computer solution of linear algebraic systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1967xi+148
10.
Alan George, Joseph W. H. Liu, An automatic nested dissection algorithm for irregular finite element problems, SIAM J. Numer. Anal., 15 (1978), 1053–1069
11.
Alan George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), 345–363
12.
F. G. Gustavson, D. J. Rose, R. A. Willoughby, Some basic techniques for solving sparse systems of linear equationsSparse Matrices and Their Applications, Plenum Press, New York, 1972, 41–52
13.
Alan J. Hoffman, Michael S. Martin, Donald J. Rose, Complexity bounds for regular finite difference and finite element grids, SIAM J. Numer. Anal., 10 (1973), 364–369
14.
Donald B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput. Mach., 24 (1977), 1–13
15.
R. J. Lipton, D. J. Rose, R. E. Tarjan, Generalized nested dissection, Technical Report, STAN-CS-77-645, Computer Science Dept., Stanford University, Stanford, CA, 1977
16.
Richard J. Lipton, Robert E. Tarjan, A separator theorem for planar graphs, Proceedings of a Conference on Theoretical Computer Science (Univ. Waterloo, Waterloo, Ont., 1977), Comput. Sci. Dept., Univ. Waterloo, Waterloo, Ont., 1978, 1–10
17.
Richard J. Lipton, Robert Endre Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), 177–189
18.
R. J. Lipton, R. E. Tarjan, Applications of aplanar separator theorem, Proc. Eighteenth Annual Symp. on Foundations of Computer Science, 1977, 162–170
19.
Donald J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970), 597–609
20.
Donald J. Rose, R. Read, A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equationsGraph theory and computing, Academic Press, New York, 1972, 183–217
21.
Donald J. Rose, R. Endre Tarjan, George S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976), 266–283
22.
Donald J. Rose, Gregory F. Whitten, J. R. Bunch, D. J. Rose, A recursive analysis of dissection strategiesSparse matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975), Academic Press, New York, 1976, 59–83
23.
A. H. Sherman, Ph.D. Thesis, On the efficient solution of sparse systems of linear and nonlinear equations, Computer Science Dept., Yale University, New Haven, CT, 1975
24.
Volker Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), 354–356
25.
R. E. Tarjan, Solving path problems on directed graphs, Technical Report, STAN-CS-75-528, Computer Science Dept., Stanford University, Stanford, CA, 1975
26.
R. E. Tarjan, J. R. Bunch, D. J. Rose, Graph theory and Gaussian eliminationSparse Matrix Computations, Academic Press, New York, 1976, 3–22
27.
O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill, London, 1971xiv+521

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 346 - 358
ISSN (online): 1095-7170

History

Submitted: 1 December 1977
Published online: 31 July 2006

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media